
Combinatorial Hill Climbing Using Micro-Genetic Algorithms

Spyros A. Kazarlis
Technological Educational Institute of Serres,

Dept. Of Informatics & Communications
Terma Magnesias St., 621 24, Serres, GREECE

kazarlis@teiser.gr

Abstract- This paper introduces a new hill-climbing
operator, (MGAC), for GA optimization of combinatorial
problems, and proposes two implementation techniques
for it. The MGAC operator uses a small size second-level
GA with a small population that evolves for a few
generations and serves as the engine for finding better
solutions in the neighborhood of the ones produced by the
main GA. The two implementations are tested on a Power
Systems’ problem called the Unit Commitment Problem,
and compared with three other methods: a GA with
classic hill-climbers, Lagrangian-Relaxation, and Dynamic
Programming. The results show the superiority of the
proposed MGAC operator.

I. INTRODUCTION
In order to boost the convergence speed of GAs towards

the exact optimum, many hybrid genetic schemes have been
proposed in the literature that combine GAs with hill climbing
or local search techniques [1], [6], [8], [9], [10], [11], [12],
[14], to solve both continuous variable and combinatorial
problems. Memetic Algorithms [13] are probably the most
well known paradigm of such schemes. Most GA-hill
climbing hybrids are implemented for continuous variable
problems. In such problems the hill climbers used are often
designed to perform independent steps along each axis in the
space (one variable at a time) searching for better solutions.
One such operator is the PhenoMute (PM) hill climbing
operator suggested in [2], [11], [12]. Such operators cannot
follow the potential “ridges” created in the search space of
difficult constrained optimization problems, as the direction
of the “ridge” usually does not coincide with that of a single
axis.

This problem has led the author together with other
researchers in introducing the Micro GA hill climbing
operator (MGA) [4], [5]. The MGA operator uses a small
second-level population, or a Micro GA [3], [7], that evolves
for a small number of generations and acts in a small
neighborhood around the best solution produced by the main
GA at each generation. The MGA operator is capable of
genetically evolving paths of arbitrary direction leading to
better solutions and following potential ridges in the search
space regardless of their direction, width, or even
discontinuities. Although proven effective the MGA operator
was designed only for continuous variable problems.

In this paper the combinatorial version of the MGA
operator is presented, called the Micro GA combinatorial hill
climbing operator, or MGAC for brevity. The major

difference in combinatorial problems is that the definition of
the ”neighborhood” of a solution is not very easily conceived,
as every small perturbation to a combinatorial problem
solution may be considered to reside within the
“neighborhood” of the solution. Thus, before introducing the
new MGAC operator, a definition of the combinatorial
“neighborhood” is given.

Moreover, two specific implementations of MGAC are
proposed, namely MGAC-ARM and MGAC-CNS. The first
one (MGAC-ARM) genetically searches the space of possible
perturbations within a single neighborhood at a time, but the
specific neighborhood that it searches is selected among all
possible neighborhoods using an Adaptive Ranking Multi-
neighborhood scheme, that promotes “fertile” neighborhoods.
The second one (MGAC-CNS) uses the Micro GA to search
the space of possible neighborhoods (Combinatorial
Neighborhood Space) and each neighborhood is evaluated by
checking the quality of a number of random chosen sample
perturbations within the neighborhood.

The organization of the paper is as follows: in section II
the definition of the combinatorial neighborhood is given. In
section III the MGAC-ARM implementation is described in
detail, while the MGAC-CNS implementation is described in
section IV. Section V presents the test problem on which the
new operators are tested, together with the simulation results.
Conclusions of this work are presented in section VI.

II. DEFINITION OF THE COMBINATORIAL

NEIGHBORHOOD
In order to give a definition of the combinatorial
“neighborhood” that is essential to develop the MGAC
operator, a few principles must be considered: a) the
neighborhood must be small compared to the whole solution,
b) the neighborhood must be allocated “around” the original
solution, and c) perturbations within the neighborhood may
result in small alterations of the whole solution. With these
requirements in mind the definition of the combinatorial
“neighborhood” can de formed as follows:

Without loss of generality we can assume that every
combinatorial problem can be encoded using the binary
alphabet. This means that every possible solution can be
represented as a binary string of some length, depending on
the specific problem. Lets define this length as l. Then the
search space SS is composed of 2l different solutions. The
neighborhood of every solution S ∈ SS can be defined as a
subset NS of SS, that is composed of solutions produced from

The Project is co-funded by the European Social Fund and National Resources - (EPEAEK-II) ARXIMHDHS.

 1

mailto:kazarlis@

solution S, by allowing n of the l bits of solution S to change
and keeping the rest l-n bits constant. Thus, the number of
solutions that reside within the neighborhood NS is 2n. This
definition covers the requirements described earlier in this
chapter as a) by keeping n small, the resulting neighborhood
search space can be small compared to the original problem’s
search space, b) the neighborhood is around the original
solution as l-n bits of the solution are kept unchanged, and
the rest are allowed to perturb, and c) by selecting the n bits in
such a way that they are semantically close (their positions
affect the same or similar regions of the decoded real
solution), it can be ensured that perturbations within the
neighborhood will result in alterations of certain portions of
the whole solution.

From the above definition it is clear that there isn’t only
one single neighborhood that can be defined for every
solution S. In fact the number of different neighborhoods
(NN) is lCn, where xCy is the combination of x elements
taken as groups of y elements and is given by :

)!(!
!

yxy
xxCyNN
−

== (1)

In a real implementation, though, this number may be reduced
when considering the third requirement (requirement c).
According to this requirement, not all combinations may be
considered as neighborhoods, because the selected bits of
each neighborhood must be semantically close.

III. IMPLEMENTATION 1 (MGAC-ARM): MICRO-GA

SEARCHES THE NEIGHBORHOOD SELECTED BY A
RANKING ALGORITHM

According to this variant, the MGAC operator searches one
neighborhood at a time, using a Micro GA. In other words the
MGAC operator genetically scans the space of all possible
perturbations of the specific n bits of a single neighborhood
(n<<l). The neighborhood searched by the MGAC operator
should not remain the same during the main GA’s run, but it
should be possible for the MGAC to examine a large number
of neighborhoods. Moreover, if the MGAC operator succeeds
in improving the best-so-far solution by examining a specific
neighborhood NEi, (i=1..NN), it is wise to insist on

examining this neighborhood, as it is possible to come up
with even better solutions in the future.

With the above considerations in mind, an adaptive ranked
based multi-neighborhood scheme (ARM) has been
developed for this MGAC variation. This scheme works as
follows :
1. Before the beginning of the GA evolution, all the possible

neighborhoods are calculated, and each one is assigned a
neighborhood identification number and a rank. At the
beginning all ranks are set equal to 1, which means that at
the beginning all neighborhoods have equal probability of
being selected by the MGAC operator for examination.

2. Every time the MGAC is invoked, it selects one
neighborhood out of NN, with probability proportional to
the neighborhood’s rank (roulette wheel selection).

3. If the MGAC finds a better solution by examining the
selected neighborhood, it increases its rank by 2, with a
maximum of 10.

4. If it fails to find a better solution, it decreases its rank by
1, with a minimum of 1.
In the long run, neighborhoods that produce better

solutions consistently, are ranked better than the ones that
don’t produce better solutions or the ones that managed to
produce a better solution once, but proved to be unproductive
later on.

The MGAC operator itself works as follows (also see
Figure 1):
1. When invoked, the MGAC is fed with the best-so-far

solution Sbest of the main GA.
2. Then, it selects a neighborhood NEi with probability

proportional to the neighborhoods rank, via roulette wheel
selection.

3. All the bits of Sbest that do not belong to NEi are kept
unchanged. Those that belong to NEi are allowed to
change.

4. It forms a population of 5 solutions that are bit strings of
length n, (where n is the number of bits allowed to
change), randomly generated at the beginning.

5. It evaluates each of the 5 solutions by injecting the bits of
each solution to the corresponding bits of solution Sbest.

Figure. 1. MGAC-ARM example on a combinatorial problem with a 10-bit encoding and neighborhoods of 3 bits. Possible
neighborhoods are 10C3, i.e. 10!/(3!(7!))=120. Neighborhoods are ranked depending on whether they produce better solutions
or not. Neighborhoods are selected with probability proportional to their ranks.

9 8 7 6 5 4 3 2 1 0

NEi NEj

10-bit encoding of a
combinatorial problem

If NEi is selected, the MGAC
searches the space of bit
combinations of bits 4, 5 and
6 of the original solution.

1010111001 1010111001

2NENN

……
7NEj
……
10NEi
……
1NE1

Neighb. Ranking

2NENN

……
7NEj
……
10NEi
……
1NE1

Neighb. Ranking

Neighborhoods comprise
of three bits.

 2

6. Then solutions (among the 5) are selected in pairs, with
probability proportional to their fitness, to mate
recombine and produce 5 new solutions (the next
generation).

7. The steps 5-6 are repeated for 7 generations.
8. If the best solution produced has better fitness than the

original solution Sbest, then the rank of neighborhood NEi
is increased by 2 (max 10). Otherwise, it is decreased by 1
(min 1).

9. Finally, if the best solution produced is better than Sbest, it
replaces it in the main GA’s population.
From the above algorithmic description it is evident that

With the MGAC-ARM scheme the following targets are
achieved:
1. The neighborhood of the best-so-far solution is

genetically searched by a Micro GA
2. All neighborhoods have the opportunity to be searched by

the operator
3. “Fertile” neighborhoods are searched more often than

“sterile” ones
However, the MGAC-ARM scheme has a scaling-up

problem: when dealing with large scale combinatorial
problems, the number NN of possible neighborhoods (sets of
n out of l bits) can be extremely large, and make it practically
impossible for the algorithm to a-priori calculate and
enumerate all possible neighborhoods.

IV. IMPLEMENTATION 2 (MGAC-CNS): MICRO-GA

SEARCHES THE NEIGHBORHOOD SPACE AND EACH
NEIGHBORHOOD IS EVALUATED BY SAMPLES

This scheme tries to solve the scaling-up problem of the
MGAC-ARM variation. Instead of using the Micro GA to
search a single neighborhood at a time (as in MGAC-ARM),
that is selected among all possible neighborhoods via a
ranking strategy, the MGAC-CNS variation uses the Micro
GA to search the space of possible neighborhoods, in order to
discover regions of “fertile” neighborhoods, the perturbations
of which may give better solutions.

In order for the MGAC-CNS to work, a representation
method is needed, to encode all possible neighborhoods in a
string of symbols. For example, in a combinatorial problem
with a 10-bit encoding and 3-bit neighborhoods, as in the
previous section (Fig.1), one might adopt an integer encoding
to represent possible neighborhoods. Each MGAC-CNS
solution could be a vector S consisting of three (3) integers
Si, i=1..3, each of which can take values in the range 0..9,
representing a bit position in the 10-bit solution of the main
problem. Thus, the solution S=(4,5,6) coincides with
neighborhood NEi of Figure 1. Of course care should be
taken during the reproduction phase so that there are no
duplicate values in every produced solution S (e.g. S=(2,2,6)
is invalid).

Every time it is called, the MGAC-CNS operator initially
produces a population of 5 such vectors at random. Then, it
evolves this population, using common integer crossover and

mutation operators, for 7 generations. Every produced vector
S, that represents a specific 3-element set of bit positions
(0..9), must be evaluated in order for the genetic evolution to
work. Thus the fitness function of the MGAC-CNS, has to
evaluate a whole neighborhood of 23, or in general 2n
solutions.

The most proper thing to do this might be the exhaustive
search method. However, this technique will consume 2n
fitness evaluations, for every evaluated solution
(neighborhood) of the MGAC-CNS operator, or 5x7x2n
evaluations every time the operator is invoked.

In order to overcome this, we have used a neighborhood
evaluation function that samples the specific neighborhood’s
solutions, by evaluating a small number m of bit
combinations within the neighborhood under evaluation. In
the simulations performed in this work we have used m=2.
The bit combinations evaluated for each neighborhood are
taken at random. After the evaluation of the samples, their
fitness values are averaged to produce the final quality of the
neighborhood under examination.

The above process is summarized in the following (see
also Figure 2):
1. For the Nth time the MGAC-CNS is invoked:
2. Produce P-1 random parent vectors (neighborhoods) Si,

i=1..P-1, Si=(Si1, Si2, …, Sin) (P is the no of genotypes in
the MGAC-CNS population, e.g. P=5, n is the bits per
neighborhood, e.g. n=3).

3. Inject the best neighborhood Sbest of the previous (N-1)
MGAC-CNS run as the Pth parent genotype.

4. Evaluate each Si neighborhood:
4-1.Randomly produce m (e.g. m=2) samples of bit

combinations for this neighborhood (e.g. 101, 011)
4-2.Inject the bits of each sample to the corresponding bits of

the best-so-far main GA solution.
4-3.Calculate Fitness Fj (j=1..m) of the resulting genotype,

using the main GA’s fitness function.
4-4.Average Fj (j=1..m), to calculate the fitness of

neighborhood Si.
5. Mate and reproduce neighborhoods Si, i=1..P, of the

parent population, using common crossover and mutation
operators, and produce the generation of offspring
neighborhoods.

6. Continue for G generations (e.g. G=7)
7. If the MGAC-CNS finds a solution better than the best-

so-far solution of the main GA, then the MGAC-CNS
solution replaces the corresponding main GA solution.

One drawback of MGAC-CNS though is the fact that

each neighborhood produced, is evaluated by a limited
number of samples. This is adopted for practical
computational reasons, because the exhaustive search of the
neighborhood may consume quite a large number of fitness
evaluations.

 3

9 8 7 6 5 4 3 2 1 0

Neighborhoods

10-bit encoding of a
combinatorial problem

1010111001

Neighborhoods comprise
of three bits.

953 821

760

Population
of neighborhoods
at generation N

853 921

740

Population
of neighborhoods
at generation N+1

754 320

Evaluation of neighborhood (457)

Produce two samples

101 110
7 5 4 7 5 4

Inject in the best-so-far solution

1010111001 1010111001

Evaluate solutions

Fitness 1 Fitness 2
Average

Fitness of (457)

Micro GA
reproduction

9 8 7 6 5 4 3 2 1 0

Neighborhoods

10-bit encoding of a
combinatorial problem

1010111001

Neighborhoods comprise
of three bits.

953 821

760

Population
of neighborhoods
at generation N

853 921

740

Population
of neighborhoods
at generation N+1

754 320

Evaluation of neighborhood (457)

Produce two samples

101 110
7 5 4 7 5 4

Inject in the best-so-far solution

1010111001 1010111001

Evaluate solutions

Fitness 1 Fitness 2
Average

Fitness of (457)

Micro GA
reproduction

Figure. 2. MGAC-CNS example on a combinatorial problem with a 10-bit encoding and neighborhoods of 3 bits. Micro GA searches the
space of all possible neighborhoods. Each produced neighborhood is evaluated by producing two random samples (bit combinations),
injecting them into the best-so-far genotype of the main GA, evaluate the two solutions and average the fitness values.

V. SIMULATION RESULTS ON THE UNIT COMMITMENT
PROBLEM

In order to test the efficiency of the two MGAC operator
variations, a difficult constrained combinatorial problem was
selected, the Unit Commitment problem (UC).

The UC problem comes from the field of Power Systems
and it is in fact a time scheduling problem. It involves
determining the start-up and shut down schedules of thermal
units to be used to meet forecasted demand over a future
short term (24-168 hour) period. The objective is to minimize
total production costs while observing a large set of operating
constraints.

The total costs consist of a) Fuel costs, b) Start-up costs
and c) Shut-down costs. Fuel costs are calculated using unit
heat rate and fuel price information usually as :

2PcPbaFC ⋅+⋅+= (2)

where P is the power output of a unit, and a, b, c are fuel cost
coefficients. The power outputs of the committed units for
every hour of the schedule are easily calculated by the λ-
iteration algorithm [2], [6].
Start-up costs are expressed as a function of the number of
hours the unit has been down. Here we have used the
following formula:

⎪⎩

⎪
⎨
⎧

>

≤
=

)__(,

)__(,

hoursstartcolddownifCSC

hoursstartcolddownifHSC
SUC (3)

where HSC is the “Hot Start Cost” value and CSC is the
“Cold Start Cost” value for the specific unit, “down” is the
number of hours the unit has been down, and
“cold_start_hours” is different for each unit. Shut-down costs
are defined as a fixed dollar amount for each unit per shut-
down, and is taken equal to 0 in this work. Thus the cost
(objective) function to be minimized can be formulated as :

∑∑∑∑
= == =

+=
U

i

iSU

j
ij

U

i

H

j
ij sSUCsFCsO

1

)(

11 1

)()()((4)

where s is a specific solution, U is the number of units, H is
the number of scheduling hours, FCij is the fuel cost of unit i
at hour j, SU(i) is the number of start-ups of unit i during the
schedule, and SUCij is the start-up cost of unit i at start-up j.

The constraints taken into account in this work, are: (a)
System power balance (demand + losses + exports), (b)
System reserve requirements, (c) Unit initial conditions, (d)
Unit high and low MW limits (economic, operating), (e) Unit
minimum-up time, (f) Unit minimum-down time.

For testing the MGAC operator we have used an instance
of the UC problem presented in [6]. This instance includes 10
thermal power production units and a scheduling horizon of
24 hours. The unit data and the forecasted demand for the
schedule are omitted for brevity and can be found in [6] .

For the application of GAs to the UC problem a simple
binary alphabet was chosen to encode a solution. With the
assumption that at every hour a certain unit can be either ON
or OFF, an H-bit string is needed to describe the operation
schedule of a single unit. In such a string, a '1' at a certain
location indicates that the unit is ON at this particular hour,
while a '0' indicates that the unit is OFF.

The main GA used a population of 50 genotypes, Roulette
Wheel parent selection, multi-point crossover and bit
mutation with adaptive application probabilities. Also some
advanced operators were used just like in [6]. Additionally,
the problem constraints were handled by adding penalty
terms to the objective function, for every constraint violation,
and applying the Varying Fitness Function technique [6],
[12] for the gradual application of penalties through the GA
run, just like in [6].

 4

TABLE I. SIMULATION RESULTS OF 3 METHODS, ON THE UC PROBLEM, REPORTED IN [6].

units
Dynamic

Programming
Lagrangian
Relaxation

Simple GA

 best solution
best

solution
gener.
limit

Mean No
of Evaluat

success
%

Best
solution

worst
solution

Differ.
%

10 565825 565825 500 35,000 60% 565825 570032 0.74
20 - 1130660 1000 70,000 75% 1126243 1132059 0.51
40 - 2258503 2000 140,000 90% 2251911 2259706 0.34
60 - 3394066 3000 210,000 100% 3376625 3384252 0.22
80 - 4526022 4000 280,000 100% 4504933 4510129 0.11

100 - 5657277 5000 350,000 100% 5627437 5637914 0.19

TABLE II. SIMULATION RESULTS OF THE TWO MGAC VARIANTS ON THE UC PROBLEM.

units GA with the MGAC-ARM operator GA with the MGAC-CNS operator
 gener

limit
success

%
Best

solution
worst

solution
Differ.

%
Average
solution

gener.
limit

success
%

best
solution

worst
solution

Differ.
%

average
solution

10 350 60% 565825 566764 0,166 566066 320 40% 565825 566977 0.203 566129
20 700 100% 1126242 1130521 0,379 1128534 640 80% 1126028 1131951 0.526 1129558
40 1400 100% 2250921 2255540 0.205 2253883 1280 100% 2251090 2256468 0.238 2254899
60 - - - - - - 1920 100% 3376429 3386609 0.301 3381095
80 - - - - - - 2560 100% 4501905 4510403 0.188 4506909
100 - - - - - - 3200 100% 5623547 5634774 0.199 5630006

(The “Differ.%” figures are the percent difference between the best and worst solutions. A GA run is considered successful when it
outperforms the corresponding Lagrangian Relaxation solution. All costs are in US$.)

The simulations included test runs for 10, 20, 40, 60, 80
and 100 unit problems. For the 20-unit problem the units
were duplicated and the demand values were doubled. The
data were scaled appropriately for the larger problems. The
two GA-MGAC variations are compared to three other
algorithms implemented and tested in [6]: a Dynamic
Programming algorithm, a Lagrangian Relaxation algorithm,
and a “simple” GA without the MGAC operator. In order to
have a fair comparison, the runs are conducted on the basis of
‘equal number of evaluations’ for all GA algorithms. On the
10 unit problem, simple GA runs consume an average of
35,000 evaluations 25,000 (population 50 X 500 generations)
of which are consumed by the simple GA and the rest 10,000
by custom hill-climbers. In order for the MGAC-ARM
scheme to consume the same total number of evaluations, the
generation limit was reduced to 350 generations (Table II),
and for the MGAC-CNS to 320 generations.

For every problem and method, 20 independent runs have
been performed as in [6]. The results are shown in Table II.
Dynamic Programming was run only for the 10-unit problem,
as for the larger problems the memory and cpu-time
resources needed were prohibitive. The GA-MGAC-ARM
variation was applied to problems of up to 40 units, as the
number of possible neighborhoods that have to be
enumerated and ranked rises to extremely high values for
larger problems (13,160,160 neighborhoods for the 40-unit
problem and 109,230,240 for the 60-unit one. The numbers
represent not all possible neighborhoods, but all valid ones.
Valid neighborhoods consist of 5units X 5hours, where the
hour bits are contiguous and the same for all units).

From the results presented in Table II the following
conclusions can be drawn:

For the 10-unit problem the two GA-MGAC schemes find
the same solution as the other 3 algorithms with a success
rate of 60% for the ARM variant, and 40% for the CNS
variant, compared to 60% of the simple GA. Moreover, the
worst solution produced by the two GA-MGAC schemes is
much closer to the optimum than the corresponding worst
solution of the simple GA, despite the reduced generation
limits. This explains the low percent difference of 0.166%
(ARM) and 0,203 (CNS). Thus, for the 10 unit problem
ARM seems to slightly outperform the simple GA, in terms
of average solution quality, while CNS seems to be slightly
worse in terms of the success rate of finding the exact
optimum, and slightly better in average solution quality than
the simple GA. This could be due to the reduced generation
limit of CNS.

For the 20-unit problem the GA-MGAC-ARM finds a
solution slightly better than that of the simple GA, yet
exhibiting better success rate and average solution quality,
while the CNS variation discovers a new up-to-now best
solution with a cost of 1126028, and exhibits similar
performance compared to the simple GA. All of the 20 ARM
runs produce solutions better than the best solution produced
by the Lagrangian Relaxation method. Additionally, the
worst solution is much closer to the best one, than the
corresponding worst solution of the simple GA, and this leads
to a smaller percent difference value of 0.379 (simple GA:
0.51). Here the ARM variant seems to clearly outperform the
simple GA, while CNS is slightly worse and more or less

 5

even with simple GA, except for the new best solution it
discovers.

For the 40-unit problem both GA-MGAC variants
discover new up-to-now solutions with a cost of 2250921
(ARM) and 2251090 (CNS). Again, all 20 runs of both
variants produce solutions better than that of the Lagrangian
Relaxation method. Moreover, the worst solution of both
variants is again much closer to the best one, than that of the
simple GA, resulting again in a smaller percent difference
value of 0.205 (ARM) and 0.238 (CNS). In this problem the
two variants exhibit similar performances, but clearly
outperform the simple GA in terms of the best and average
solution quality.

For the 60, 80, and 100-unit problems the CNS variant
seems to outperform the simple GA considering the best
solutions found, exhibiting thus better in-depth search
efficiency, but is slightly worse in terms of average solution
quality (% difference). This could be due to the reduced
generation limit of the GA-MGAC-CNS algorithm, that is
mandatory in order to achieve the same total number of
fitness evaluations.

From the above it is evident that both MGAC operator
variations really enhance the GA performance on a difficult
constrained combinatorial problem, like the UC problem
presented. They are capable of discovering even better
solutions than the best known ones for the specific instances
of the UC problem used in this work. They also seem to
enhance the robustness of GAs in consistently finding
solutions close to the optimum. Also it is evident that the
ARM variant is most suitable for relatively small problem
scales (e.g. up to 40X24=960 bits problems), where it has a
clear advantage over the simple GA, while the CNS variation
is most suitable for large scale problems, where the ARM
variation is not applicable. In large scale problems the CNS
variation also seems to have a clear advantage over the
simple GA, especially in discovering solution close to the
global optimum.

VI. CONCLUSIONS

In this paper, a new hill climbing operator for genetic
optimization of combinatorial problems has been presented,
the Micro GA Combinatorial hill climbing operator (MGAC).
Two variants of MGAC have been presented: the ARM and
the CNS variants.

Both variants try to search combinatorial neighborhoods
or subsets of the symbol strings that encode complete
solutions of the main GA, keeping a part of the best-so-far
solution constant, and allowing a subset (neighborhood) of it
to change.

The performance of the two operator variations has been
demonstrated by their application on a power systems
scheduling problem, the Unit Commitment problem. The
simulation results have shown that the MGAC operator is
able to boost the performance of the main GA in difficult
combinatorial problems, by improving its search efficiency
and robustness.

More effort is also needed in applying the two MGAC
operator variations to more combinatorial problems, in order
to test if their performance and robustness can be generalized.

REFERENCES
[1] D. H. Ackley, “Stochastic Iterated Genetic Hill Climbing,”

Ph.D. Thesis, Department of Computer Sciences, Carnegie
Mellon University, Pittsburgh, PA, 1987.

[2] A. Bakirtzis, V. Petridis, S. Kazarlis, “A Genetic Algorithm
Solution to the Economic Dispatch Problem,” IEE
Proceedings - Generation, Transmission, Distribution, Vol.
141, No. 4, July 1994, pp. 377-382.

[3] G. Dozier, J. Brown and D. Bahler, "Solving Small and Large
Scale Constraint Satisfaction Problems using a Heuristic-based
Microgenetic Algorithm," in Proc. of the 1st IEEE Int. Conf.
on Evolutionary Computation, vol. 1, Piscataway, NJ: IEEE
Press, pp. 306-311, 1994.

[4] S.Kazarlis, S.Papadakis, J.Theocharis and V.Petridis, "Micro-
Genetic Algorithms as Generalized Hill Climbing Operators
for GA Optimization," IEEE Transactions on Evolutionary
Computation, Vol. 5, No. 3, June 2001, pp. 204-217.

[5] S. A. Kazarlis, “Micro-Genetic Algorithms As Generalized
Hill-Climbing Operators for GA Optimization of
Combinatorial Problems – Application to Power Systems
Scheduling”, Proceedings of the the 4th Conference on
Technology and Automation, October 2002, Thessaloniki,
Greece, pp. 300-305.

[6] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, “A Genetic
Algorithm Solution to the Unit Commitment Problem,” IEEE
Trans. on Power Systems, vol. 11, no. 1, pp. 83-92, Feb 1996.

[7] K. Krishnakumar, "Micro-genetic algorithms for stationary
and non-stationary function optimization," in SPIE
Proceedings: Intelligent Control and Adaptive Systems, pp.
289-296, 1989.

[8] J. A. Miller, W. D. Potter, R. V. Gandham, and C. N. Lapena,
"An Evaluation of Local Improvement Operators for Genetic
Algorithms," IEEE Trans. on Syst., Man, Cybern., vol. 23, No.
5, pp. 1340-1351, 1993.

[9] M. Mitchell, J. Holland, and S. Forrest, "When will a genetic
algorithm outperform a hill-climbing?," in J. D. Cowen, G.
Tesauro, and J. Alspector, editors, Advances in Neural
Information Processing Systems 6, San Mateo, CA, 1994,
Morgan Kaufmann.

[10] H. Muhlenbein, "How Genetic Algorithms really work: I.
Mutation and hill-climbing," in R. Manner and B. Maderick,
editors, Parallel Problem Solving from Nature 2, pp. 15-25,
Elsevier, 1992.

[11] V. Petridis and S. Kazarlis, “Varying Quality Function in
Genetic Algorithms and the Cutting Problem,” in Proceedings
of the 1st IEEE Conference on Evolutionary Computation (vol.
1). Piscataway, NJ: IEEE Press, 1994, pp. 166-169.

[12] V. Petridis, S. Kazarlis, and A. Bakirtzis, “Varying Fitness
Functions in Genetic Algorithm Constrained Optimization:
The Cutting Stock and Unit Commitment Problems,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 28, Part
B, No. 5, October 1998, pp. 629-640..

[13] N. J. Radcliffe and P. D. Surry, “Formal Memetic
Algorithms,” in Proceedings of the 1st AISB Workshop
on Evolutionary Computing (AISB '94), T. C. Fogarty,
Editor, Springer-Verlag, pp. 1-16, 1994.

[14] J-M. Renders and H. Bersini, "Hybridizing Genetic
Algorithms with Hill-Climbing Methods for Global

 6

Optimization: Two Possible Ways," in Proc. of the 1st IEEE
Int. Conf. on Evol. Computation, vol. 1, Piscataway, NJ: IEEE
Press, 1994, pp. 312-317.

 7

	Introduction
	Definition of the Combinatorial Neighborhood
	Implementation 1 (MGAC-ARM): Micro-GA searches the neighborh
	Implementation 2 (MGAC-CNS): Micro-GA searches the neighborh
	Simulation Results on the Unit Commitment Problem
	Conclusions

