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Abstract- This paper introduces a new hill-climbing 
operator, (MGAC), for GA optimization of combinatorial 
problems, and proposes two implementation techniques 
for it. The MGAC operator uses a small size second-level 
GA with a small population that evolves for a few 
generations and serves as the engine for finding better 
solutions in the neighborhood of the ones produced by the 
main GA. The two implementations are tested on a Power 
Systems’ problem called the Unit Commitment Problem, 
and compared with three other methods: a GA with 
classic hill-climbers, Lagrangian-Relaxation, and Dynamic 
Programming. The results show the superiority of the 
proposed MGAC operator. 

I. INTRODUCTION 
In order to boost the convergence speed of GAs towards 

the exact optimum, many hybrid genetic schemes have been 
proposed in the literature that combine GAs with hill climbing 
or local search techniques [1], [6], [8], [9], [10], [11], [12], 
[14], to solve both continuous variable and combinatorial 
problems. Memetic Algorithms [13] are probably the most 
well known paradigm of such schemes. Most GA-hill 
climbing hybrids are implemented for continuous variable 
problems. In such problems the hill climbers used are often 
designed to perform independent steps along each axis in the 
space (one variable at a time) searching for better solutions. 
One such operator is the PhenoMute (PM) hill climbing 
operator suggested in [2], [11], [12]. Such operators cannot 
follow the potential “ridges” created in the search space of 
difficult constrained optimization problems, as the direction 
of the “ridge” usually does not coincide with that of a single 
axis.  

This problem has led the author together with other 
researchers in introducing the Micro GA hill climbing 
operator (MGA) [4], [5]. The MGA operator uses a small 
second-level population, or a Micro GA [3], [7], that evolves 
for a small number of generations and acts in a small 
neighborhood around the best solution produced by the main 
GA at each generation. The MGA operator is capable of 
genetically evolving paths of arbitrary direction leading to 
better solutions and following potential ridges in the search 
space regardless of their direction, width, or even 
discontinuities. Although proven effective the MGA operator 
was designed only for continuous variable problems. 

In this paper the combinatorial version of the MGA 
operator is presented, called the Micro GA combinatorial hill 
climbing operator, or MGAC for brevity. The major 

difference in combinatorial problems is that the definition of 
the ”neighborhood” of a solution is not very easily conceived, 
as every small perturbation to a combinatorial problem 
solution may be considered to reside within the 
“neighborhood” of the solution. Thus, before introducing the 
new MGAC operator, a definition of the combinatorial 
“neighborhood” is given. 

Moreover, two specific implementations of MGAC are 
proposed, namely MGAC-ARM and MGAC-CNS. The first 
one (MGAC-ARM) genetically searches the space of possible 
perturbations within a single neighborhood at a time, but the 
specific neighborhood that it searches is selected among all 
possible neighborhoods using an Adaptive Ranking Multi-
neighborhood scheme, that promotes “fertile” neighborhoods. 
The second one (MGAC-CNS) uses the Micro GA to search 
the space of possible neighborhoods (Combinatorial 
Neighborhood Space) and each neighborhood is evaluated by 
checking the quality of a number of random chosen sample 
perturbations within the neighborhood. 

The organization of the paper is as follows: in section II 
the definition of the combinatorial neighborhood is given. In 
section III the MGAC-ARM implementation is described in 
detail, while the MGAC-CNS implementation is described in 
section IV. Section V presents the test problem on which the 
new operators are tested, together with the simulation results. 
Conclusions of this work are presented in section VI. 

 
II. DEFINITION OF THE COMBINATORIAL 

NEIGHBORHOOD 
In order to give a definition of the combinatorial 
“neighborhood” that is essential to develop the MGAC 
operator, a few principles must be considered: a) the 
neighborhood must be small compared to the whole solution, 
b) the neighborhood must be allocated “around” the original 
solution, and c) perturbations within the neighborhood may 
result in small alterations of the whole solution. With these 
requirements in mind the definition of the combinatorial 
“neighborhood” can de formed as follows: 

Without loss of generality we can assume that every 
combinatorial problem can be encoded using the binary 
alphabet. This means that every possible solution can be 
represented as a binary string of some length, depending on 
the specific problem. Lets define this length as l. Then the 
search space SS is composed of 2l different solutions. The 
neighborhood of every solution S ∈ SS can be defined as a 
subset NS of SS, that is composed of solutions produced from 
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solution S, by allowing n of the l bits of solution S to change 
and keeping the rest l-n bits constant. Thus, the number of 
solutions that reside within the neighborhood NS is 2n. This 
definition covers the requirements described earlier in this 
chapter as a) by keeping n small, the resulting neighborhood 
search space can be small compared to the original problem’s 
search space, b) the neighborhood is around the original 
solution as l-n bits of the solution are kept unchanged, and 
the rest are allowed to perturb, and c) by selecting the n bits in 
such a way that they are semantically close (their positions 
affect the same or similar regions of the decoded real 
solution), it can be ensured that perturbations within the 
neighborhood will result in alterations of certain portions of 
the whole solution. 

From the above definition it is clear that there isn’t only 
one single neighborhood that can be defined for every 
solution S. In fact the number of different neighborhoods 
(NN) is lCn, where xCy is the combination of x elements 
taken as groups of y elements and is given by : 

)!(!
!

yxy
xxCyNN
−

==   (1) 

In a real implementation, though, this number may be reduced 
when considering the third requirement (requirement c). 
According to this requirement, not all combinations may be 
considered as neighborhoods, because the selected bits of 
each neighborhood must be semantically close.  

 
III. IMPLEMENTATION 1 (MGAC-ARM): MICRO-GA 

SEARCHES THE NEIGHBORHOOD SELECTED BY A 
RANKING ALGORITHM 

According to this variant, the MGAC operator searches one 
neighborhood at a time, using a Micro GA. In other words the 
MGAC operator genetically scans the space of all possible 
perturbations of the specific n bits of a single neighborhood 
(n<<l). The neighborhood searched by the MGAC operator 
should not remain the same during the main GA’s run, but it 
should be possible for the MGAC to examine a large number 
of neighborhoods. Moreover, if the MGAC operator succeeds 
in improving the best-so-far solution by examining a specific 
neighborhood NEi, (i=1..NN), it is wise to insist on 

examining this neighborhood, as it is possible to come up 
with even better solutions in the future. 

With the above considerations in mind, an adaptive ranked 
based multi-neighborhood scheme (ARM) has been 
developed for this MGAC variation. This scheme works as 
follows : 
1. Before the beginning of the GA evolution, all the possible 

neighborhoods are calculated, and each one is assigned a 
neighborhood identification number and a rank. At the 
beginning all ranks are set equal to 1, which means that at 
the beginning all neighborhoods have equal probability of 
being selected by the MGAC operator for examination. 

2. Every time the MGAC is invoked, it selects one 
neighborhood out of NN, with probability proportional to 
the neighborhood’s rank (roulette wheel selection). 

3. If the MGAC finds a better solution by examining the 
selected neighborhood, it increases its rank by 2, with a 
maximum of 10. 

4. If it fails to find a better solution, it decreases its rank by 
1, with a minimum of 1. 
In the long run, neighborhoods that produce better 

solutions consistently, are ranked better than the ones that 
don’t produce better solutions or the ones that managed to 
produce a better solution once, but proved to be unproductive 
later on.  

The MGAC operator itself works as follows (also see 
Figure 1): 
1. When invoked, the MGAC is fed with the best-so-far 

solution Sbest of the main GA. 
2. Then, it selects a neighborhood NEi with probability 

proportional to the neighborhoods rank, via roulette wheel 
selection. 

3. All the bits of Sbest that do not belong to NEi are kept 
unchanged. Those that belong to NEi are allowed to 
change. 

4. It forms a population of 5 solutions that are bit strings of 
length n, (where n is the number of bits allowed to 
change), randomly generated at the beginning.  

5. It evaluates each of the 5 solutions by injecting the bits of 
each solution to the corresponding bits of solution Sbest. 

 

Figure. 1. MGAC-ARM example on a combinatorial problem with a 10-bit encoding and neighborhoods of 3 bits. Possible 
neighborhoods are 10C3, i.e. 10!/(3!(7!))=120. Neighborhoods are ranked depending on whether they produce better solutions 
or not. Neighborhoods are selected with probability proportional to their ranks. 
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6. Then solutions (among the 5) are selected in pairs, with 
probability proportional to their fitness, to mate 
recombine and produce 5 new solutions (the next 
generation). 

7. The steps 5-6 are repeated for 7 generations. 
8. If the best solution produced has better fitness than the 

original solution Sbest, then the rank of neighborhood NEi 
is increased by 2 (max 10). Otherwise, it is decreased by 1 
(min 1). 

9. Finally, if the best solution produced is better than Sbest, it 
replaces it in the main GA’s population. 
From the above algorithmic description it is evident that 

With the MGAC-ARM scheme the following targets are 
achieved: 
1. The neighborhood of the best-so-far solution is 

genetically searched by a Micro GA 
2. All neighborhoods have the opportunity to be searched by 

the operator 
3. “Fertile” neighborhoods are searched more often than 

“sterile” ones 
However, the MGAC-ARM scheme has a scaling-up 

problem: when dealing with large scale combinatorial 
problems, the number NN of possible neighborhoods (sets of 
n out of l bits) can be extremely large, and make it practically 
impossible for the algorithm to a-priori calculate and 
enumerate all possible neighborhoods. 

 
IV. IMPLEMENTATION 2 (MGAC-CNS): MICRO-GA 

SEARCHES THE NEIGHBORHOOD SPACE AND EACH 
NEIGHBORHOOD IS EVALUATED BY SAMPLES 

This scheme tries to solve the scaling-up problem of the 
MGAC-ARM variation. Instead of using the Micro GA to 
search a single neighborhood at a time (as in MGAC-ARM), 
that is selected among all possible neighborhoods via a 
ranking strategy, the MGAC-CNS variation uses the Micro 
GA to search the space of possible neighborhoods, in order to 
discover regions of “fertile” neighborhoods, the perturbations 
of which may give better solutions. 

In order for the MGAC-CNS to work, a representation 
method is needed, to encode all possible neighborhoods in a 
string of symbols. For example, in a combinatorial problem 
with a 10-bit encoding and 3-bit neighborhoods, as in the 
previous section (Fig.1), one might adopt an integer encoding 
to represent possible neighborhoods. Each MGAC-CNS 
solution could be a vector S consisting of three (3) integers 
Si, i=1..3, each of which can take values in the range 0..9, 
representing a bit position in the 10-bit solution of the main 
problem. Thus, the solution S=(4,5,6) coincides with 
neighborhood NEi of Figure 1. Of course care should be 
taken during the reproduction phase so that there are no 
duplicate values in every produced solution S (e.g. S=(2,2,6) 
is invalid). 

Every time it is called, the MGAC-CNS operator initially 
produces a population of 5 such vectors at random. Then, it 
evolves this population, using common integer crossover and 

mutation operators, for 7 generations. Every produced vector 
S, that represents a specific 3-element set of bit positions 
(0..9), must be evaluated in order for the genetic evolution to 
work. Thus the fitness function of the MGAC-CNS, has to 
evaluate a whole neighborhood of 23, or in general 2n 
solutions.  

The most proper thing to do this might be the exhaustive 
search method. However, this technique will consume 2n 
fitness evaluations, for every evaluated solution 
(neighborhood) of the MGAC-CNS operator, or 5x7x2n 
evaluations every time the operator is invoked. 

In order to overcome this, we have used a neighborhood 
evaluation function that samples the specific neighborhood’s 
solutions, by evaluating a small number m of bit 
combinations within the neighborhood under evaluation. In 
the simulations performed in this work we have used m=2. 
The bit combinations evaluated for each neighborhood are 
taken at random. After the evaluation of the samples, their 
fitness values are averaged to produce the final quality of the 
neighborhood under examination. 

The above process is summarized in the following (see 
also Figure 2): 
1. For the Nth time the MGAC-CNS is invoked: 
2. Produce P-1 random parent vectors (neighborhoods) Si, 

i=1..P-1, Si=(Si1, Si2, …, Sin) (P is the no of genotypes in 
the MGAC-CNS population, e.g. P=5, n is the bits per 
neighborhood, e.g. n=3). 

3. Inject the best neighborhood Sbest of the previous (N-1) 
MGAC-CNS run as the Pth parent genotype. 

4. Evaluate each Si neighborhood:  
4-1.Randomly produce m (e.g. m=2) samples of bit 

combinations for this neighborhood (e.g. 101, 011) 
4-2.Inject the bits of each sample to the corresponding bits of 

the best-so-far main GA solution. 
4-3.Calculate Fitness Fj (j=1..m) of the resulting genotype, 

using the main GA’s fitness function. 
4-4.Average Fj (j=1..m), to calculate the fitness of 

neighborhood Si. 
5. Mate and reproduce neighborhoods Si, i=1..P, of the 

parent population, using common crossover and mutation 
operators, and produce the generation of offspring 
neighborhoods. 

6. Continue for G generations (e.g. G=7) 
7. If the MGAC-CNS finds a solution better than the best-

so-far solution of the main GA, then the MGAC-CNS 
solution replaces the corresponding main GA solution. 
 
One drawback of MGAC-CNS though is the fact that 

each neighborhood produced, is evaluated by a limited 
number of samples. This is adopted for practical 
computational reasons, because the exhaustive search of the 
neighborhood may consume quite a large number of fitness 
evaluations. 
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Figure. 2. MGAC-CNS example on a combinatorial problem with a 10-bit encoding and neighborhoods of 3 bits. Micro GA searches the 
space of all possible neighborhoods. Each produced neighborhood is evaluated by producing two random samples (bit combinations), 
injecting them into the best-so-far genotype of the main GA, evaluate the two solutions and average the fitness values. 

V. SIMULATION RESULTS ON THE UNIT COMMITMENT 
PROBLEM 

In order to test the efficiency of the two MGAC operator 
variations, a difficult constrained combinatorial problem was 
selected, the Unit Commitment problem (UC).  

The UC problem comes from the field of Power Systems 
and it is in fact a time scheduling problem. It involves 
determining the start-up and shut down schedules of thermal 
units to be used to meet forecasted demand over a future 
short term (24-168 hour) period. The objective is to minimize 
total production costs while observing a large set of operating 
constraints.  

The total costs consist of a) Fuel costs, b) Start-up costs 
and c) Shut-down costs. Fuel costs are calculated using unit 
heat rate and fuel price information usually as : 

2PcPbaFC ⋅+⋅+=  (2)

where P is the power output of a unit, and a, b, c are fuel cost 
coefficients. The power outputs of the committed units for 
every hour of the schedule are easily calculated by the λ-
iteration algorithm [2], [6]. 
Start-up costs are expressed as a function of the number of 
hours the unit has been down. Here we have used the 
following formula: 

⎪⎩
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where HSC is the “Hot Start Cost” value and CSC is the 
“Cold Start Cost” value for the specific unit, “down” is the 
number of hours the unit has been down, and 
“cold_start_hours” is different for each unit. Shut-down costs 
are defined as a fixed dollar amount for each unit per shut-
down, and is taken equal to 0 in this work. Thus the cost 
(objective) function to be minimized can be formulated as : 
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where s is a specific solution, U is the number of units, H is 
the number of scheduling hours, FCij is the fuel cost of unit i 
at hour j, SU(i) is the number of start-ups of unit i during the 
schedule, and SUCij is the start-up cost of unit i at start-up j. 

The constraints taken into account in this work, are: (a) 
System power balance (demand + losses + exports), (b) 
System reserve requirements, (c) Unit initial conditions, (d) 
Unit high and low MW limits (economic, operating), (e) Unit 
minimum-up time, (f) Unit minimum-down time.  

For testing the MGAC operator we have used an instance 
of the UC problem presented in [6]. This instance includes 10 
thermal power production units and a scheduling horizon of 
24 hours. The unit data and the forecasted demand for the 
schedule are omitted for brevity and can be found in [6] . 

For the application of GAs to the UC problem a simple 
binary alphabet was chosen to encode a solution. With the 
assumption that at every hour a certain unit can be either ON 
or OFF, an H-bit string is needed to describe the operation 
schedule of a single unit. In such a string, a '1' at a certain 
location indicates that the unit is ON at this particular hour, 
while a '0' indicates that the unit is OFF.  

The main GA used a population of 50 genotypes, Roulette 
Wheel parent selection, multi-point crossover and bit 
mutation with adaptive application probabilities. Also some 
advanced operators were used just like in [6]. Additionally, 
the problem constraints were handled by adding penalty 
terms to the objective function, for every constraint violation, 
and applying the Varying Fitness Function technique [6], 
[12] for the gradual application of penalties through the GA 
run, just like in [6]. 
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TABLE I. SIMULATION RESULTS OF 3 METHODS, ON THE UC PROBLEM, REPORTED IN [6]. 

units 
Dynamic 

Programming 
Lagrangian 
Relaxation 

Simple GA 

 best solution 
best 

solution 
gener. 
limit 

Mean No 
of Evaluat

success 
% 

Best 
solution 

worst 
solution 

Differ. 
% 

10 565825 565825 500 35,000 60% 565825 570032 0.74 
20 - 1130660 1000 70,000 75% 1126243 1132059 0.51 
40 - 2258503 2000 140,000 90% 2251911 2259706 0.34 
60 - 3394066 3000 210,000 100% 3376625 3384252 0.22 
80 - 4526022 4000 280,000 100% 4504933 4510129 0.11 

100 - 5657277 5000 350,000 100% 5627437 5637914 0.19 
 

TABLE II. SIMULATION RESULTS OF THE TWO MGAC VARIANTS ON THE UC PROBLEM. 

units GA with the MGAC-ARM operator GA with the MGAC-CNS  operator 
 gener 

limit 
success 

% 
Best 

solution 
worst 

solution 
Differ. 

% 
Average 
solution 

gener.
limit 

success 
% 

best 
solution 

worst 
solution 

Differ. 
% 

average 
solution 

10 350 60% 565825 566764 0,166 566066 320 40% 565825 566977 0.203 566129 
20 700 100% 1126242 1130521 0,379 1128534 640 80% 1126028 1131951 0.526 1129558
40 1400 100% 2250921 2255540 0.205 2253883 1280 100% 2251090 2256468 0.238 2254899
60 - - - - - - 1920 100% 3376429 3386609 0.301 3381095
80 - - - - - - 2560 100% 4501905 4510403 0.188 4506909
100 - - - - - - 3200 100% 5623547 5634774 0.199 5630006

(The “Differ.%” figures are the percent difference between the best and worst solutions. A GA run is considered successful when it 
outperforms the corresponding Lagrangian Relaxation solution. All costs are in US$.) 

The simulations included test runs for 10, 20, 40, 60, 80 
and 100 unit problems. For the 20-unit problem the units 
were duplicated and the demand values were doubled. The 
data were scaled appropriately for the larger problems. The 
two GA-MGAC variations are compared to three other 
algorithms implemented and tested in [6]: a Dynamic 
Programming algorithm, a Lagrangian Relaxation algorithm, 
and a “simple” GA without the MGAC operator. In order to 
have a fair comparison, the runs are conducted on the basis of 
‘equal number of evaluations’ for all GA algorithms. On the 
10 unit problem, simple GA runs consume an average of 
35,000 evaluations 25,000 (population 50 X 500 generations) 
of which are consumed by the simple GA and the rest 10,000 
by custom hill-climbers. In order for the MGAC-ARM 
scheme to consume the same total number of evaluations, the 
generation limit was reduced to 350 generations (Table II), 
and for the MGAC-CNS to 320 generations.  

For every problem and method, 20 independent runs have 
been performed as in [6]. The results are shown in Table II. 
Dynamic Programming was run only for the 10-unit problem, 
as for the larger problems the memory and cpu-time 
resources needed were prohibitive. The GA-MGAC-ARM 
variation was applied to problems of up to 40 units, as the 
number of possible neighborhoods that have to be 
enumerated and ranked rises to extremely high values for 
larger problems (13,160,160 neighborhoods for the 40-unit 
problem and 109,230,240 for the 60-unit one. The numbers 
represent not all possible neighborhoods, but all valid ones. 
Valid neighborhoods consist of 5units X 5hours, where the 
hour bits are contiguous and the same for all units). 

From the results presented in Table II the following 
conclusions can be drawn: 

For the 10-unit problem the two GA-MGAC schemes find 
the same solution as the other 3 algorithms with a success 
rate of 60% for the ARM variant, and 40% for the CNS 
variant, compared to 60% of the simple GA. Moreover, the 
worst solution produced by the two GA-MGAC schemes is 
much closer to the optimum than the corresponding worst 
solution of the simple GA, despite the reduced generation 
limits. This explains the low percent difference of 0.166% 
(ARM) and 0,203 (CNS). Thus, for the 10 unit problem 
ARM seems to slightly outperform the simple GA, in terms 
of average solution quality, while CNS seems to be slightly 
worse in terms of the success rate of finding the exact 
optimum, and slightly better in average solution quality than 
the simple GA. This could be due to the reduced generation 
limit of CNS. 

For the 20-unit problem the GA-MGAC-ARM finds a 
solution slightly better than that of the simple GA, yet 
exhibiting better success rate and average solution quality, 
while the CNS variation discovers a new up-to-now best 
solution with a cost of 1126028, and exhibits similar 
performance compared to the simple GA. All of the 20 ARM 
runs produce solutions better than the best solution produced 
by the Lagrangian Relaxation method. Additionally, the 
worst solution is much closer to the best one, than the 
corresponding worst solution of the simple GA, and this leads 
to a smaller percent difference value of 0.379 (simple GA: 
0.51). Here the ARM variant seems to clearly outperform the 
simple GA, while CNS is slightly worse and more or less 

 
 5



even with simple GA, except for the new best solution it 
discovers. 

For the 40-unit problem both GA-MGAC variants 
discover new up-to-now solutions with a cost of 2250921 
(ARM) and 2251090 (CNS). Again, all 20 runs of both 
variants produce solutions better than that of the Lagrangian 
Relaxation method. Moreover, the worst solution of both 
variants is again much closer to the best one, than that of the 
simple GA, resulting again in a smaller percent difference 
value of 0.205 (ARM) and 0.238 (CNS). In this problem the 
two variants exhibit similar performances, but clearly 
outperform the simple GA in terms of the best and average 
solution quality.  

For the 60, 80, and 100-unit problems the CNS variant 
seems to outperform the simple GA considering the best 
solutions found, exhibiting thus better in-depth search 
efficiency, but is slightly worse in terms of average solution 
quality (% difference). This could be due to the reduced 
generation limit of the GA-MGAC-CNS algorithm, that is 
mandatory in order to achieve the same total number of 
fitness evaluations.  

From the above it is evident that both MGAC operator 
variations really enhance the GA performance on a difficult 
constrained combinatorial problem, like the UC problem 
presented. They are capable of discovering even better 
solutions than the best known ones for the specific instances 
of the UC problem used in this work. They also seem to 
enhance the robustness of GAs in consistently finding 
solutions close to the optimum. Also it is evident that the 
ARM variant is most suitable for relatively small problem 
scales (e.g. up to 40X24=960 bits problems), where it has a 
clear advantage over the simple GA, while the CNS variation 
is most suitable for large scale problems, where the ARM 
variation is not applicable. In large scale problems the CNS 
variation also seems to have a clear advantage over the 
simple GA, especially in discovering solution close to the 
global optimum. 

 
VI. CONCLUSIONS 

In this paper, a new hill climbing operator for genetic 
optimization of combinatorial problems has been presented, 
the Micro GA Combinatorial hill climbing operator (MGAC). 
Two variants of MGAC have been presented: the ARM and 
the CNS variants.  

Both variants try to search combinatorial neighborhoods 
or subsets of the symbol strings that encode complete 
solutions of the main GA, keeping a part of the best-so-far 
solution constant, and allowing a subset (neighborhood) of it 
to change. 

The performance of the two operator variations has been 
demonstrated by their application on a power systems 
scheduling problem, the Unit Commitment problem. The 
simulation results have shown that the MGAC operator is 
able to boost the performance of the main GA in difficult 
combinatorial problems, by improving its search efficiency 
and robustness. 

More effort is also needed in applying the two MGAC 
operator variations to more combinatorial problems, in order 
to test if their performance and robustness can be generalized. 
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