

Constraint Handling Methods in Genetic
Algorithms

Spyros A. Kazarlis

Dept. of Informatics & Communications, T.E.I. of Serres, Greece

Abstract
Real-world optimisation problems are often subject to constraints that must be satisfied by the
optimal solution. Genetic Algorithms, although being powerful optimisation tools, they do not
incorporate constraint-handling features. This is the reason why a large number of methods
have been proposed in the literature to rectify this inefficiency. In this paper we present the
most significamt of these techniques, divided into categories. Simulation results are given for
a number of constraint handling GA methods on a common test set of 5 constrained
optimisation problems.

Keywords: Genetic Algorithms, Constrained Optimization

(This work is co-funded by the European Social Fund and National Resources - (EPEAEK-II)
ARXIMHDHS)

1. Introduction
Optimisation tasks in real-world problems are often subject to a number of problem
constraints. A general constrained optimisation problem can be formulated as follows:

Optimise the objective function ()xF r
, S∈xr , where xr is a generalized vector of

problem parameters, and is the solution search space, subject to the following
inequality constraints:

S

() 0≤xICi
r

, i=1..p, (1)

and the following equality constraints:

() 0=xEC j
r

, j=1..q, (2)

In the special case where nℜ∈=),...,,(21 nxxxxr (), we have the general
nonlinear programming problem (NP).

nS ℜ⊆

The general constrained optimisation problem is intractable [Michalewicz
et.al.(1996)], i.e. no global algorithm (other than exhaustive search) has been found
yet to provide the optimum solution for every conceivable type of the objective

Even page header 94

function ()xF r
 and the constraint functions ()xICi

r
 and ()xEC j

r
. This leaves the

door open for innovation and application of a great variety of optimisation methods,
that attempt to solve the above general problem formulation.

Genetic Algorithms (GAs) define a class of powerful global optimisation algorithms
with wide applicability and a large number of successful applications. However, they
lack the ability to handle problem constraints. For this reason, a number of methods
have been proposed in the literature to cover this inefficiency. The proposed methods
vary significantly in the way they try to attack the problem constraints and they are
classified in a number of categories.

This work presents the most significant methods of the literature for handling
problem constraints in GAs. One such technique is the Varying Fitness Function
Technique (VFF) [Kazarlis et.al.(1996)], [Kazarlis et.al.(1998)], [Petridis
et.al.(1994)], [Petridis et.al.(1998)], that has been proposed by the author. In this work
we also present simulation results of a total of 13 different GA-based constraint
handling methods on a test set of 5 constraint optimisation problems.

Section 2 presents the most significant constraint handling methods for GAs. The 13
constraint handling methods (and their implementations) for which results are
presented are discussed in Section 3. Section 4 describes the five test problems. The
results are reported in Section 5 and finally conclusions are presented in Section 6.

2. Constraint Handling Methods
The proposed constraint handling methods for GAs can be divided into the following
categories:

a) Rejection of unfeasible solutions.

b) Approximation of unfeasible solutions with feasible ones (or repair),

c) Penalty function methods

d) Methods that use special phenotype-to-genotype representations (decoders)

e) Methods that use special recombination and permutation operators

f) Methods based on parent selection strategies.

g) Methods that use two-phase strategies for satisfying the constraints and
optimising the objective function.

h) Multi objective optimisation methods.

i) Co-evolutionary methods that maintain more than one populations.

j) Complex hybrid methods

Odd page header 95

k) Methods based on novel approaches.

2.1 Category (a): Rejection of unfeasible solutions
During the reproduction phase of the GA, any unfeasible offspring that is produced is
immediately rejected and the reproduction is repeated until it delivers a feasible
solution. This method is quite simple but, in highly constrained spaces, a lot of CPU
time is consumed in the effort of finding feasible solutions [Michalewicz (1992)].

2.2 Category (b): Approximation of unfeasible solutions with feasible ones
Methods of this category either approximate an invalid solution by its nearest valid
one, or repair it to become a valid one [Michalewicz et.al.(1995)].

In the work of D.Orvosh & L.Davis [Orvosh et.al.(1994)] the authors deal with three
constrained combinatorial optimisation problems, and they use repairing mechanisms
to transform illegal solutions to legal ones before evaluating them. Additionally, they
examine the application of the “forcing” technique, i.e. the replacement of illegal
genotypes with their repaired counterparts.

2.3 Category (c): Penalty Function Methods
Methods of this category add penalty terms to the fitness function that are related to
the violation of constraints. According to this principle, the fitness function has the
following general form:

 ()xF r , if xr is a feasible solution
 ()xQ r

=

 () ()xPxF rr

+ , if xr is unfeasible

 (3)

where is a penalty function depending on the degree of constraint violation. ()xP r

This method is probably the most commonly used method for handling constraints
and is implemented in many variations that can be divided in two sub-categories: (1)
static penalty methods and (2) varying/adaptive penalty methods, where penalties are
time-variant.

Sub-category (c-1): Static penalty methods.

An example of this category is the work of A. Homaifar, S. Lai and X. Qi [Homaifar
et.al.(1994)]. This method first creates several (l) levels of violation for every
problem constraint j (j=1..n). For each level of violation and for each constraint, a
penalty coefficient is created Rij (i=1..l, j=1..n), following the principle that higher
levels of violation require larger values of the penalty coefficient. Then the fitness

Even page header 96

function is given by: , where dj(∑
+

=
⋅+=

qp

j
jij xdRxFxQ

1

2)()()(rrr
xr) is a measure of

violation of the jth constraint.

Another method is the static penalties of D. Powell and M. Skolnick [Powell
et.al.(1993)] that makes a clear distinction between feasible and unfeasible solutions,
based on their fitness values, by adopting the rule that for any feasible solution xr f
and any unfeasible solution xr u, it must be Q(xr f)<Q(xr u) (minimization problem).
This means that all unfeasible solutions are ranked worse than the worst feasible one.
This is ensured by the following fitness function:

, where r is a constant and λ(g,) is an

iteration dependent function that influences the evaluation of unfeasible solutions so
as to maintain the separation of feasible/unfeasible fitness values.

)xλ()x()x(=)x(rrrr g,d rQ i +⋅+ ∑
+

=

qp

i
F

1
xr

Sub-category (c-2): Varying/Adaptive penalty methods.

In order to overcome the problem of determining the suitable level of penalties for the
specific application, many researchers have proposed non-stationary (varying /
adaptive) penalty function methods:

The work of J.A. Joines and C.R. Houck (1994) [Joines et.al.(1994)]. In this work the
authors propose a fitness function of the form:

∑ =⋅⋅+= n
i i

a xdgCxFgxQ 1)()()(),(rrr β , where C is a constant, g is the generation

index, α and β are “severity” exponent factors, n is the number of problem constraints
and di(

r
), i=1..n, are the measures of violation of the constraints. x

The work of V.Petridis and S.Kazarlis [Petridis et.al.(1994)], where the authors deal
with a Cutting Stock problem where the constraint is that no shape overlapping is
allowed. The authors use a varying fitness function of the form:

xBxdA
G
gxFgxQ rrrr δ⋅+Φ⋅⋅+=)))((()(),(, where F(xr) is the objective function,

g is the current generation index, G is the generation limit of the GA, A is a “severity”
penalty factor, Φ(.) is a nonnegative penalty function, d(xr) is a measure of the
constraint violation (shape overlapping), B is a penalty threshold and δ is a binary
coefficient (δ =0 for feasible and δ

xr
rx xr =1 for unfeasible solutions). This is a linearly

varying fitness function (VFF) that keeps the penalty level low at the first stages of
search and increases it linearly during the run, reaching appropriately large values at
the end of the GA evolution.

Odd page header 97

Also in the work of S. Kazarlis, A. Bakirtzis and V. Petridis [Kazarlis et.al.(1996)]
the authors deal with the problem of Unit Commitment (power systems) and use a
similar varying fitness function of the form:

x
n
i i BxdA

G
gxFgxQ rrrr δ⋅+⋅⋅+= ∑ =))(()(),(1 , where n is the number of problem

constraints, di() is a measure of the constraint violation of the ith constraint, and the
other coefficients are the same as in the previous paragraph.

xr

The test results reported in the above mentioned works (Category c-2) generally show
a superiority of the varying/adaptive penalty schemes over the corresponding static
penalty schemes that they have been compared with.

2.4 Category (d): Methods that use special phenotype-to-genotype
representations (decoders) to encode only the feasible part of the search
space.
Methods of this category use special phenotype-to-genotype representation schemes
(decoders), that minimize or eliminate the possibility of producing unfeasible
solutions through the standard genetic operators, Crossover and Mutation
[Michalewicz (1992)]. In the work of S. Koziel and Z. Michalewicz [Koziel
et.al.(1999)] a “homomorphous mapping” method is proposed that maps the feasible
area F of the search space into a hyper-cube [-1,1]n. This method is easily applied
when the feasible area is convex, but in nonconvex or disjoint feasible spaces it uses
an extended mapping method that maps the feasible parts of the space into disjoint
intervals. This method is unable to handle equality constraints of the form EC()=0
and thus it replaces them with two inequalities of the form IC1()<=δ and
IC2()>=-δ, where δ is a small positive value.

xr

xr

xr

2.5 Category (e): Methods using special recombination and permutation
operators that preserve feasibility
In this category special problem-specific recombination and permutation operators are
designed, similar to traditional crossover and mutation, that produce only feasible
solutions [Michalewicz et.al.(1994)], [Michalewicz et.al.(1995)]. We should mention
the Genocop method of Z. Michalewicz [Michalewicz (1992)] where the feasibility of
solutions regarding the linear constraints is preserved by the use of special “closed”
operators. The special mutation operator first calculates the feasible domain around
the specific solution and then performs the mutation within that domain, while the
crossover operator is an arithmetic crossover of the form: 21)1(papao rrr

−+= , where
ov is the offspring and 1pv , 2pv the two parents and 0≤α≤1. The above crossover
always produces a feasible solution.

Even page header 98

2.6 Category (f): Methods that are based on parent selection strategies
This category includes methods that implement sophisticated parent selection
strategies in order to promote the optimization of the objective function as well as the
satisfaction of constraints. These methods treat the objective quality and the
feasibility of solutions as two different metrics of their overall fitness and use parent
selection methods that select individuals according to either their objective quality or
their feasibility.

In the work of F.Jimenez and J.L.Verdegay [Jimenez et.al.(1999)], the “optimality”
and the “unfeasibility” of solutions are treated as two different measures and a
tournament selection method is used that selects parents according to the following
three rules: (1) two feasible individuals are compared based on their objective fitness
and the best is selected, (2) a feasible solution is always preferred over an unfeasible
one, and (3) when two unfeasible solutions are compared, the maximum constraint
violation is calculated for both solutions and the one with the lower constraint
violation wins.

2.7 Category (g): Methods that use two-phase strategies for satisfying the
constraints and optimising the objective function
Methods of this category [Hinterding et.al.(1998)], [Schoenauer et.al.(1993)] first
concentrate on finding feasible solutions, and then they try to optimise the objective
function preserving the solution feasibility. This category includes the Behavioral
Memory Model method proposed by M. Schoenauer and S. Xanthakis [Schoenauer
et.al.(1993)] that, before optimising the objective function, it evolves a population of
solutions trying to find the feasible area of the search space. Another method of this
category is the CONGA method of R. Hinterding and Z. Michalewicz [Hinterding
et.al.(1998)] that uses sophisticated parent matching techniques to select parent
genotypes in order to promote the generation of offspring that first satisfy the
constraints and later optimise the objective function in a two-phase strategy.

2.8 Category (h): Multi objective optimisation methods
The optimization of an objective function F(xr) that is subject to n=p+q constraints
can be seen as a multiobjective optimization problem (MOOP) where the objective
function F() and the n measures of constraint violation di(xr xr), i=1..n, constitute a
n+1 dimensioned vector U

v
= (F(xr), d1(xr) , d2(xr) , ... , dn(xr)), each member of

which must be optimised (minimized for di(xr), i=1..n). This formulation allows the
application of any multiobjective optimization method [Fonseca et.al.(1995)] to the
area of constrained optimization problems. Some classical multiobjective
optimisation methods create an aggregating optimisation function Qagg() that
usually is a combination (linear or not) of the elements of vector U

xr
v

 (e.g.

Odd page header 99

∑ =
⋅+⋅=

n

i iioagg xdwxFwxQ
1

)()()(rrr , where wi, i=0..n are weight coefficients). This

approach resembles the various penalty approaches mentioned in category (c). Other
multiobjective optimization techniques focus on creating sophisticated parent
selection strategies to promote the simultaneous optimization of each of the objectives
within the evolving population. Some of these selection strategies aim in producing
certain fractions of the offspring population by selecting parents according to each
one of the objectives, separately. Other methods use Pareto-based [Fonseca
et.al.(1995)] fitness assignment mechanisms that are based on Pareto-optimality. Such
methods assign ranks to individuals in a population according to whether they are
dominated by other individuals (i.e. if other individuals exist that have better
objective values concerning all of the objectives) or not.

In the work of D. Schaffer [Schaffer (1985)] a Vector Evaluated GA (VEGA) is
proposed that selects 1/(n+1) of the parents based on each of the objectives.

In the work of P.D. Surry et.al. [Surry et.al.(1995)] all members of the population are
ranked on the basis of constraint violation with a penalty value r(xr). The penalty
r(), together with the value of the objective function F(xr xr), leads to the two-
objective optimisation problem.

2.9 Category (i): Co-evolutionary methods that maintain more than one
populations.
In this category we should report the Genocop III method introduced by Z.
Michalewicz and G. Nazhiyath [Michalewicz et.al.(1995)]. This method maintains
and evolves two populations: one with search points that are produced genetically and
may be feasible or unfeasible, and another with reference feasible points selected
from the previous population. The method repairs the unfeasible solutions of the first
population using reference points from the second population.

2.10 Category (j): Complex hybrid methods
Methods of this class combine one or more of the above methods together with
calculus-based or other methods. A representative example is that of the method
called Genocop II, introduced by Z. Michalewicz and N. Attia [Michalewicz
et.al.(1994)]. This method combines traditional calculus-based optimisation methods
together with GAs and a meta-level Simulated Annealing scheme, for the solution of
optimisation problems with linear and nonlinear constraints.

2.11 Category (k): Methods based on novel approaches
One of the methods of this category is Cultural Algorithms [Reynolds (1994)].
Cultural Algorithms are based on the notion of culture, being another form of

Even page header 100

inheritance system. They maintain a “belief space” that is used to constrain the
combination of characteristics that the population members can have. The belief
space is associated with the “acceptable” individuals’ characteristics (or behavior)
and is used as a constraint to guide the search for characteristics with good qualities.

Also belonging in this category is the method of P. Hajela and J. Lee [Hajela
et.al.(1996)] who use an Artificial Immune System model. In their implementation
the authors separate the feasible genotypes of the population (antigens) from the
unfeasible ones (antibodies). Then, they separately evolve the sub-population of
unfeasible genotypes in order to maximize the similarity between them and the
feasible ones. Then the two populations are mixed, and, since all genotypes are now
feasible, they are evolved using a standard genetic algorithm.

Another novel approach is the method proposed by G. Bilchev and I. Parmee [Bilchev
et.al.(1996)] who use an Ant Colony search model. This model is applicable to
continuous search spaces by representing a finite number of search directions from a
base point (the nest) as vectors that evolve in time according to the ants’ fitness. The
model works on three levels: the individual search (e.g. stochastic hill climbing), the
cooperation between agents (ants) and the meta-cooperation level between search
paths. In order to handle constraints, the authors add the feature of “acceptability” to
the “food sources” (highly fit solutions) that guide the evolution of the ants. The
acceptability of a “food source” decreases as the amount of constraint violation
increases.

3. Constraint Handling Methods Used for the Comparison Test
For presenting comparative results of various constraint handling techniques we
consulted the work of Z. Michalewicz and G. Nazhiyath [Michalewicz et.al.(1995)]
and the work of R. Hinterding and Z. Michalewicz [Hinterding et.al.(1998)]. The nine
methods compared in these works are:

1. The static penalty method of A. Homaifar, S. Lai and X. Qi, (cat. c-1)

2. The method of varying penalties of J.A.Joines and C.R.Houck (cat. c-2).

3. The method of M. Schoenauer and S. Xanthakis (cat. g).

4. The Genocop II method by Z. Michalewicz and N. Attia (cat. j).

5. The method of static penalties of D. Powell and M. Skolnick (cat. c-1).

6a. The method of rejecting the unfeasible solutions (death penalty) (cat. a)

6b. The same method but starting with a feasible population (cat. a).

7. The method Genocop III of Z. Michalewicz and G. Nazhiyath (cat. i).

8. The CONGA method of R. Hinterding and Z. Michalewicz (cat. g).

Odd page header 101

The population was 70 genotypes in all cases and the generation limit was 5000
generations.

To test the performance of the VFF technique we have built implementations for two
more methods:

9. A GA using a static penalty function of the form :

, where A is a

“severity” factor, δi is a binary factor (δi=1 if constraint i is violated and δi =0
otherwise), wi is a “weight” factor for constraint i, di(

() () () () ()() x

qp

i
iii BxdwAxFxPxFxQ r
rrrrr δδ ⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Φ⋅⋅⋅+=+= ∑

+

=1

xr) is a measure of the degree of
violation of constraint i, Φi(.) is a function of this measure, B is a penalty threshold
and δ is a binary factor (δxr xr =1 if xr is unfeasible and δ xr =0 otherwise).Two
different implementations are built for this method. The first one (9a) is a simple
Genetic Algorithm (sGA). The second (9b) is a GA with a Hill Climbing operator
(GA-HC). This implementation incorporates all of the features of sGA plus an
additional hill climbing operator called Phenotype Mutation [Petridis et.al.(1994)],
[Petridis et.al.(1998)].

10. A GA with the VFF technique. Two implementations are also built for this
method. The first one (10a) is a simple GA with the VFF technique (GA-VFF). The
second (10b) is a GA with Hill Climbing and the VFF technique (GA-HC-VFF). This
implementation incorporates all of the features of the GA-HC plus the application of
the Varying Fitness Function technique.

4. The five Problems of the Comparison Test
The five test cases were the following:

Test Case 1. Minimize G1(X) = 5x1 + 5x2 + 5x3 + 5x4 -5 - (4) ∑
=

4

1i

2
ix ∑

=

13

5i
ix

with variable ranges: 0≤xi≤1, i=1…9, 0≤xi≤100, i=10,11,12, 0≤xi≤1, i=13

and 9 constraints:

2x1+2x2+x10+x11 ≤ 10

2x1+2x3+x10+x12 ≤ 10

2x2+2x3+x11+x12 ≤ 10

-8x1+x10 ≤ 0

-8x2+x11 ≤ 0

Even page header 102

-8x3+x12 ≤ 0

-2x4-x5+x10 ≤ 0

-2x6-x7+x11 ≤ 0

-2x8-x9+x12 ≤ 0

Test Case 2. Minimize G2(X) = x1 + x2 + x3 (5)

with variable ranges: 100≤x1≤104, 1000≤xi≤104, i=2,3, 10≤xi≤1000, i=4..8 ,

and 6 constraints:

1-0.0025(x4+x6) ≥ 0

1-0.0025(x5+x7-x4) ≥ 0

1-0.01(x8-x5) ≥ 0

x1x6-833.33252x4-100x1+83333.333 ≥ 0

x2x7-1250x5-x2x4+1250x4 ≥ 0

x3x8-1250000-x3x5+2500x5 ≥ 0

Test Case 3. Minimize the function:

G3(X)=(x1-10)2+5(x2-12)2+x34+3(x4-11)2+10x56+7x62+x74-4x6x7-10x6-8x7 (6)

with variable ranges: -10 ≤ xi ≤ 10, i=1..7 ,

and 4 constraints:

127 - 2x12 - 3x24 - x3 - 4x42 - 5x5 ≥ 0

282 - 7x1 - 3x2 - 10x32 - x4 + x5 ≥ 0

196 - 23x1 - x22 - 6x62 + 8x7 ≥ 0

-4x12 - x22 + 3x1x2 - 2x32 - 5x6 + 11x7 ≥ 0

Test Case 4. Minimize G4(X) = (7) 54321 xxxxxe
with variable ranges: -2.3 ≤ xi ≤ 2.3, i=1,2 , -3.2 ≤ xi ≤ 3.2, i=3,4,5

and 3 constraints:

x12 + x22 + x32 + x42 + x52 = 10

x2x3 - 5x4x5 = 0

x13 + x23 = -1

Test Case 5. Minimize the function:

Odd page header 103

G5(X) = x12 + x22 + x1x2 - 14x1 - 16x2 + (x3 - 10)2 + 4(x4 - 5)2 + (x5 - 3)2 + 2(x6 -
1)2 + 5x72 + 7(x8 - 11)2 + 2(x9 - 10)2 + (x10 - 7)2 + 45 (8)

with variable ranges: -10 ≤ xi ≤ 10, i=1..10 ,

and 8 constraints:

105 - 4x1 - 5x2 + 3x7 - 9x8 ≥ 0

-10x1 + 8x2 + 17x7 - 2x8 ≥ 0

8x1 - 2x2 - 5x9 + 2x10 + 12 ≥ 0

-3(x1 - 2)2 - 4(x2 - 3)2 - 2x32 + 7x4 + 120 ≥ 0

-5x12 - 8x2 - (x3 - 6)2 + 2x4 + 40 ≥ 0

-x12 - 2(x2 - 2)2 + 2x1x2 - 14x5 + 6x6 ≥ 0

-0.5(x1 - 8)2 - 2(x2 - 4)2 - 3x52 + x6 + 30 ≥ 0

3x1 - 6x2 - 12(x9 - 8)2 + 7x10 ≥ 0

5. Simulation Results and Comparisons
The test results of methods 1 through 6b of Section 3 on the five problems of Section
4 are shown in Table 1. Also the test results of methods 7 through 10b of Section 3
are reported in Table 2.

For methods 1 through 7, 10 experiments were performed for each problem. For
method 8, 20 experiments were performed, and for methods 9a – 10b 50 experiments
were performed for each problem.

In both tables for every problem the best (b), median (m) and worst (w) solution
found is shown, together with the number (c) of violated constraints at the median
solution. The three numbers displayed in the (c) rows of Table II are the number of
constraints violated by a quantity between 1.0 and 10, 0.1 and 1.0, and 0.001 and 0.1
respectively. For methods 9a through 10b the percentage of feasible solutions is
shown instead. The symbol ‘*’ means that the method was not applied on the specific
test case and the symbol ‘⎯’ means that the solution produced was not meaningful
(the constraints were violated by a quantity more than 10).

Among methods 1 through 8 the ones that exhibit the best overall performance are the
CONGA method (R. Hinterding and Z. Michalewicz, method 8), Genocop II method
(Z. Michalewicz and N. Attia, method 4), the Genocop III method (Z. Michalewicz
and G. Nazhiyath, method 7) and the GA-HC-VFF method (S.Kazarlis and V.
Petridis, method 10b).

Even page header 104

Table 1. Results of 7 methods on 5 problems. Method numbering corresponds to that
of Section 3

test
case

Exact
optima

 Method
1

Method
2

Method
3

Method
4

Method
5

Method
6a

Method
6b

 b -15.002 -15.000 -15.000 -15.000 -15.000 -15.000
1 -15.00 m -15.002 -15.000 -15.000 -15.000 -15.000 ⎯ -14.999
 w -15.001 -14.999 -14.998 -15.000 -14.999 -13.616
 c 0, 0, 4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
 b 2282.72 3117.24 7485.66 7377.97 2101.36 7872.95

2 7049.33 m 2449.79 4213.49 8271.29 8206.15 2101.41 ⎯ 8559.42
 w 2756.68 6056.21 8752.41 9652.90 2101.55 8668.65
 c 0, 3, 0 0, 3, 0 0, 0, 0 0, 0, 0 1, 2, 0 0, 0, 0
 b 680.771 680.787 680.836 680.642 680.805 680.934 680.847

3 680.63 m 681.262 681.111 681.175 680.718 682.682 681.771 681.826
 w 689.660 682.798 685.640 680.955 685.738 689.442 689.417
 c 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
 b 0.084 0.059 0.054 0.067

4 0.05395 m 0.955 0.812 * 0.064 0.091 * *
 w 1.000 2.542 0.557 0.512
 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
 b 24.690 25.486 18.917 17.338 25.653

5 24.3062 m 29.258 26.905 ⎯ 24.418 22.932 ⎯ 27.116
 w 36.060 42.358 44.302 48.866 32.477
 c 0, 1, 1 0, 0, 0 0, 1, 0 1, 0, 0 0, 0, 0

For test case 1 all methods find the same optimal solution. For test case 2 the best
solution is found by method 8 (CONGA) while the second best is found by GA-HC-
VFF. For test case 3, method 7 (Genocop III) finds the overall best solution, followed
by method 8 (CONGA). For test case 4, the best solution is found by GA-HC-VFF,
followed by method 8 (CONGA) and method 4 (Genocop II). And finally for test case
5, the best solution is also found by the GA-HC-VFF method while method 8
(CONGA) comes second best.

From these results it is evident that some methods seem to clearly outperform others,
exhibiting better performance on diverse problems. It is also evident that among the
best methods one cannot clearly distinguish a winner, as some of them exhibit better
performance on some problems and worse on others.

Odd page header 105

TableII. Results of 6 more methods on the 5 problems. Method numbering
corresponds to that of Section 3

test
case

Exact
optima

 Method
7

Method
8

Method 9a
sGA

Method 9b
GA-HC

Method 10a
GA-VFF

Method 10b
GA-HC-VFF

 b -15.000 -15.000 -15.00 -15.00 -15.0 -15.00
1 -15.00 m -15.000 -15.00 -15.00 -15.00 -15.0 -15.00
 w -15.000 -15.00 -15.00 -15.0 -15.00
 c 0, 0, 0 100% 100% 100% 100%
 b 7286.65 7083.21 7529.0478 7270.5369 7248.3587 7115.9982

2 7049.33 m 7804.33 10080.1641 8936.8215 9040.7122 9002.5598
 w 17085.2636 12983.4040 12561.9301 11944.3052
 c 78% 90% 72% 90%
 b 680.640 680.65 680.805677 680.72180 680.73259 680.676424

3 680.63 m 680.72 683.813684 682.74501 682.47911 681.4013675
 w 680.889 689.413076 688.59298 688.36369 682.4630019
 c 100% 100% 100% 100%
 b 0.054 0.0616218 0.0541294 0.0540426 0.0539762

4 0.05395 m * 0.054 0.617415 0.2450273 0.0805291 0.0756711
 w 0.054 1.000000 0.7632619 0.2201789 0.2263098
 c 90% 92% 98% 98%
 b 25.883 24.44 26.699057 24.966805 24.618510 24.403088

5 24.3062 m 25.61 41.180946 35.489303 27.335638 27.460453
 w 74.121369 65.504347 30.802398 30.020087
 c 100% 100% 100% 100%

6.Conclusions

In this paper, a large number of methods, reported in the literature, have been
presented for handling constraints, when applying GAs on constrained optimization
problems. Also test results have been presented for a total of 13 different methods on
a test suite of 5 problems. From the test results it is shown that some methods like
CONGA and GA-HC-VFF stand out from the crowd, exhibiting robust performance
on all problems. This work could be enhanced by implementing more methods and
testing them on a wider range of constrained problems.

References
Bilchev G. and Parmee I.C.(1996), Constrained and Multi-Modal Optimisation with

an Ant Colony Search Model in Proceedings of the 2nd International Conference
on Adaptive Computing in Engineering Design and Control (ACEDC’96), I.C.

Even page header 106

Parmee and M.J. Denham (eds.), University of Plymouth, Plymouth, UK, pp. 145-
151.

Fonseca C.M. and Flemming P.J.(1995), An Overview of Evolutionary Algorithms in
Multiobjective Optimization Evolutionary Computation, Vol. 3, No. 1, pp. 1-16.

Hajela P. and Lee J.(1996), Constrained Genetic Search via Schema Adaptation. An
Immune Network Solution Structural Optimization, vol 12, no 1, pp. 11-15.

Hinterding R. and Michalewicz Z.(1998), Your Brains and My Beauty: Parent
Matching for Constrained Optimisation in Proceedings of the 5th IEEE
International Conference on Evolutionary Computation, Anchorage, Alaska, May
4-9, pp. 810-815.

Homaifar A., Lai S., and Qi X.(1994), Constrained Optimization via Genetic
Algorithms Simulation, vol. 62, no. 4, pp. 242-254.

Joines J.A. and Houck C.R.(1994), On the Use of Non-Stationary Penalty Functions
to Solve Nonlinear Constrained Optimization Problems with GA’s in Proceedings
of the 1st IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE
Press, pp. 579-584.

Kazarlis S.A., Bakirtzis A.G., and Petridis V.(1996), A Genetic Algorithm Solution to
the Unit Commitment Problem IEEE Transactions on Power Systems, vol. 11, no.
1, pp. 83-92.

Kazarlis S.A. and Petridis V.(1998), Varying Fitness Functions in Genetic
Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms in
Proceedings of the 5th International Conference on Parallel Problem Solving from
Nature (PPSN-V), Amsterdam, pp. 211-220.

Koziel S. and Michalewicz Z.(1999), Evolutionary Algorithms, Homomorphous
Mappings, and Constrained Parameter Optimization IEEE Transactions on
Evolutionary Computation, vol. 7, No 1, pp 19-44

Michalewicz Z.(1992), Genetic Algorithms + Data Structures = Evolution Programs,
Second Edition, Springer-Verlag.

Michalewicz Z. and Attia N.(1994), Evolutionary Optimization of Constrained
Problems in Proceedings of the 3rd Annual Conference on Evolutionary
Programming, A.V. Sebald and L.J. Fogel, Eds., River Edge, NJ: World Scientific,
pp. 98-108.

Michalewicz Z. and Nazhiyath G.(1995), Genocop III: A Co-evolutionary Algorithm
for Numerical Optimization Problems with Nonlinear Constraints in Proceedings
of the 2nd IEEE Conference on Evolutionary Computation, Perth, Australia (vol.
2). Piscataway, NJ: IEEE Press, pp. 647-651.

Michalewicz Z. and Schoenauer M.(1996), Evolutionary Algorithms for Constrained
Parameter Optimization Problems IEEE Transactions on Evolutionary
Computation, vol. 4, no. 1, pp. 1-32.

Orvosh D. and Davis L.(1994), Using a Genetic Algorithm to Optimize Problems with
Feasibility Constraints in Proceedings of the 1st IEEE Conference on
Evolutionary Computation. Piscataway, NJ: IEEE Press, pp. 548-553.

Odd page header 107

Petridis V. and Kazarlis S.(1994), Varying Quality Function in Genetic Algorithms
and the Cutting Problem in Proceedings of the 1st IEEE Conference on
Evolutionary Computation (vol. 1). Piscataway, NJ: IEEE Press, pp. 166-169.

Petridis V., Kazarlis S., and Bakirtzis A.(1998), Varying Fitness Functions in Genetic
Algorithm Constrained Optimization: The Cutting Stock and Unit Commitment
Problems IEEE Transactions on Systems, Man, and Cybernetics, vol. 28, part B,
no. 5, pp. 629-640.

Powell D. and Skolnick M.(1993), Using Genetic Algorithms in Engineering Design
Optimization with Non-Linear Constraints in Proceedings of the 5th International
Conference on Genetic Algorithms, S. Forrest, Ed. Los Altos, CA: Morgan
Kaufmann, pp. 424-430.

Reynolds R.G. (1994), An Introduction to Cultural Algorithms in Proceedings of the
3rd Annual Conference on Evolutionary Programming, A. V. Sebald and L. J.
Fogel, Eds. River Edge, NJ: World Scientific, pp. 131-139.

Schaffer D.(1985), Multiple objective optimization with vector evaluated genetic
algorithms in Proceedings of the 1st International Conference on Genetic
Algorithms, J.J. Grefenstette (Ed.), Laurence Erlbaum Associates, Hillsdale, NJ,
pp. 93-100.

Schoenauer M. and Xanthakis S.(1993), Constrained GA Optimization in Proceedings
of the 5th International Conference on Genetic Algorithms, S. Forrest, Ed. Los
Altos, CA: Morgan Kaufmann, pp. 573-580.

Surry P.D., Radcliffe N.J. and Boyd I.(1995), A multi-objective approach to
constrained optimization of gas supply networks in Proceedings of the AISB-95
Workshop on Evolutionary Computing, Terence C. Fogarty, Ed., Vol. 993,
Springer Verlag, pp. 166-180.

Jimenez F. and Verdegay J.L.(1999), Evolutionary Techniques for Constrained
Optimization Problems in Proceedings of the 7th European Congress on Intelligent
Techniques and Soft Computing (EUFIT ’99), Aachen, Germany, Springer-
Verlag.

