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Abstract 
Real-world optimisation problems are often subject to constraints that must be satisfied by the 
optimal solution. Genetic Algorithms, although being powerful optimisation tools, they do not 
incorporate constraint-handling features. This is the reason why a large number of methods 
have been proposed in the literature to rectify this inefficiency. In this paper we present the 
most significamt of these techniques, divided into categories. Simulation results are given for 
a number of constraint handling GA methods on a common test set of 5 constrained 
optimisation problems. 
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1. Introduction 
Optimisation tasks in real-world problems are often subject to a number of problem 
constraints. A general constrained optimisation problem can be formulated as follows: 

Optimise the objective function ( )xF r
, S∈xr , where xr  is a generalized vector of 

problem parameters, and  is the solution search space, subject to the following 
inequality constraints: 

S

( ) 0≤xICi
r

, i=1..p,     (1) 

and the following equality constraints: 

( ) 0=xEC j
r

,  j=1..q,     (2) 

In the special case where nℜ∈= ),...,,( 21 nxxxxr ( ), we have the general 
nonlinear programming problem (NP). 

nS ℜ⊆

The general constrained optimisation problem is intractable [Michalewicz 
et.al.(1996)], i.e. no global algorithm (other than exhaustive search) has been found 
yet to provide the optimum solution for every conceivable type of the objective 
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function ( )xF r
 and the constraint functions ( )xICi

r
 and ( )xEC j

r
. This leaves the 

door open for innovation and application of a great variety of optimisation methods, 
that attempt to solve the above general problem formulation. 

Genetic Algorithms (GAs) define a class of powerful global optimisation algorithms 
with wide applicability and a large number of successful applications. However, they 
lack the ability to handle problem constraints. For this reason, a number of methods 
have been proposed in the literature to cover this inefficiency. The proposed methods 
vary significantly in the way they try to attack the problem constraints and they are 
classified in a number of categories. 

This work presents the most significant methods of the literature for handling 
problem constraints in GAs. One such technique is the Varying Fitness Function 
Technique (VFF) [Kazarlis et.al.(1996)], [Kazarlis et.al.(1998)], [Petridis 
et.al.(1994)], [Petridis et.al.(1998)], that has been proposed by the author. In this work 
we also present simulation results of a total of 13 different GA-based constraint 
handling methods on a test set of 5 constraint optimisation problems. 

Section 2 presents the most significant constraint handling methods for GAs. The 13 
constraint handling methods (and their implementations) for which results are 
presented are discussed in Section 3. Section 4 describes the five test problems. The 
results are reported in Section 5 and finally conclusions are presented in Section 6. 

2. Constraint Handling Methods 
The proposed constraint handling methods for GAs can be divided into the following 
categories: 

a) Rejection of unfeasible solutions. 

b) Approximation of unfeasible solutions with feasible ones (or repair), 

c) Penalty function methods 

d) Methods that use special phenotype-to-genotype representations (decoders) 

e) Methods that use special recombination and permutation operators 

f) Methods based on parent selection strategies. 

g) Methods that use two-phase strategies for satisfying the constraints and 
optimising the objective function. 

h) Multi objective optimisation methods. 

i) Co-evolutionary methods that maintain more than one populations. 

j) Complex hybrid methods 
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k) Methods based on novel approaches. 

2.1 Category (a): Rejection of unfeasible solutions  
During the reproduction phase of the GA, any unfeasible offspring that is produced is 
immediately rejected and the reproduction is repeated until it delivers a feasible 
solution. This method is quite simple but, in highly constrained spaces, a lot of CPU 
time is consumed in the effort of finding feasible solutions [Michalewicz (1992)]. 

2.2 Category (b): Approximation of unfeasible solutions with feasible ones  
Methods of this category either approximate an invalid solution by its nearest valid 
one, or repair it to become a valid one [Michalewicz et.al.(1995)]. 

In the work of D.Orvosh & L.Davis [Orvosh et.al.(1994)] the authors deal with three 
constrained combinatorial optimisation problems, and they use repairing mechanisms 
to transform illegal solutions to legal ones before evaluating them. Additionally, they 
examine the application of the “forcing” technique, i.e. the replacement of illegal 
genotypes with their repaired counterparts. 

2.3 Category (c): Penalty Function Methods  
Methods of this category add penalty terms to the fitness function that are related to 
the violation of constraints. According to this principle, the fitness function has the 
following general form:  

   ( )xF r , if xr  is a feasible solution 
                             ( )xQ r

= 
 
 ( ) ( )xPxF rr

+ , if xr  is unfeasible 

 
 (3) 
 

where  is a penalty function depending on the degree of constraint violation. ( )xP r

This method is probably the most commonly used method for handling constraints 
and is implemented in many variations that can be divided in two sub-categories: (1) 
static penalty methods and (2) varying/adaptive penalty methods, where penalties are 
time-variant. 

Sub-category (c-1): Static penalty methods. 

An example of this category is the work of A. Homaifar, S. Lai and X. Qi [Homaifar 
et.al.(1994)]. This method first creates several (l) levels of violation for every 
problem constraint j (j=1..n). For each level of violation and for each constraint, a 
penalty coefficient is created Rij (i=1..l, j=1..n), following the principle that higher 
levels of violation require larger values of the penalty coefficient. Then the fitness 
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function is given by: , where dj(∑
+

=
⋅+=

qp

j
jij xdRxFxQ

1

2 )()()( rrr
xr ) is a measure of 

violation of the jth constraint. 

Another method is the static penalties of D. Powell and M. Skolnick [Powell 
et.al.(1993)] that makes a clear distinction between feasible and unfeasible solutions, 
based on their fitness values, by adopting the rule that for any feasible solution xr f 
and any unfeasible solution xr u, it must be Q( xr f)<Q( xr u) (minimization problem). 
This means that all unfeasible solutions are ranked worse than the worst feasible one. 
This is ensured by the following fitness function: 

, where r is a constant and λ(g, ) is an 

iteration dependent function that influences the evaluation of unfeasible solutions so 
as to maintain the separation of feasible/unfeasible fitness values. 

)xλ( )x()x( = )x( rrrr g,d rQ i +⋅+ ∑
+

=

qp

i
F

1
xr

Sub-category (c-2): Varying/Adaptive penalty methods. 

In order to overcome the problem of determining the suitable level of penalties for the 
specific application, many researchers have proposed non-stationary (varying / 
adaptive) penalty function methods:  

The work of J.A. Joines and C.R. Houck (1994) [Joines et.al.(1994)]. In this work the 
authors propose a fitness function of the form: 

∑ =⋅⋅+= n
i i

a xdgCxFgxQ 1 )()()(),( rrr β , where C is a constant, g is the generation 

index, α and β are “severity” exponent factors, n is the number of problem constraints 
and di(

r
), i=1..n, are the measures of violation of the constraints. x

The work of V.Petridis and S.Kazarlis [Petridis et.al.(1994)], where the authors deal 
with a Cutting Stock problem where the constraint is that no shape overlapping is 
allowed. The authors use a varying fitness function of the form: 

xBxdA
G
gxFgxQ rrrr δ⋅+Φ⋅⋅+= )))((()(),( , where F( xr ) is the objective function, 

g is the current generation index, G is the generation limit of the GA, A is a “severity” 
penalty factor, Φ(.) is a nonnegative penalty function, d( xr ) is a measure of the 
constraint violation (shape overlapping), B is a penalty threshold and δ   is a binary 
coefficient (δ =0 for feasible and δ

xr
rx xr =1 for unfeasible solutions). This is a linearly 

varying fitness function (VFF) that keeps the penalty level low at the first stages of 
search and increases it linearly during the run, reaching appropriately large values at 
the end of the GA evolution. 
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Also in the work of S. Kazarlis, A. Bakirtzis and V. Petridis [Kazarlis et.al.(1996)] 
the authors deal with the problem of Unit Commitment (power systems) and use a 
similar varying fitness function of the form: 

x
n
i i BxdA

G
gxFgxQ rrrr δ⋅+⋅⋅+= ∑ = ))(()(),( 1 , where n is the number of problem 

constraints, di( ) is a measure of the constraint violation of the ith constraint, and the 
other coefficients are the same as in the previous paragraph. 

xr

The test results reported in the above mentioned works (Category c-2) generally show 
a superiority of the varying/adaptive penalty schemes over the corresponding static 
penalty schemes that they have been compared with. 

2.4 Category (d): Methods that use special phenotype-to-genotype 
representations (decoders) to encode only the feasible part of the search 
space. 
Methods of this category use special phenotype-to-genotype representation schemes 
(decoders), that minimize or eliminate the possibility of producing unfeasible 
solutions through the standard genetic operators, Crossover and Mutation 
[Michalewicz (1992)]. In the work of S. Koziel and Z. Michalewicz [Koziel 
et.al.(1999)] a “homomorphous mapping” method is proposed that maps the feasible 
area F of the search space into a hyper-cube [-1,1]n. This method is easily applied 
when the feasible area is convex, but in nonconvex or disjoint feasible spaces it uses 
an extended mapping method that maps the feasible parts of the space into disjoint 
intervals. This method is unable to handle equality constraints of the form EC( )=0 
and thus it replaces them with two inequalities of the form IC1( )<=δ and 
IC2( )>=-δ, where δ is a small positive value. 

xr

xr

xr

2.5 Category (e): Methods using special recombination and permutation 
operators that preserve feasibility 
In this category special problem-specific recombination and permutation operators are 
designed, similar to traditional crossover and mutation, that produce only feasible 
solutions [Michalewicz et.al.(1994)], [Michalewicz et.al.(1995)]. We should mention 
the Genocop method of Z. Michalewicz [Michalewicz (1992)] where the feasibility of 
solutions regarding the linear constraints is preserved by the use of special “closed” 
operators. The special mutation operator first calculates the feasible domain around 
the specific solution and then performs the mutation within that domain, while the 
crossover operator is an arithmetic crossover of the form: 21 )1( papao rrr

−+= , where 
ov  is the offspring and 1pv , 2pv  the two parents and 0≤α≤1. The above crossover 
always produces a feasible solution. 
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2.6 Category (f): Methods that are based on parent selection strategies 
This category includes methods that implement sophisticated parent selection 
strategies in order to promote the optimization of the objective function as well as the 
satisfaction of constraints. These methods treat the objective quality and the 
feasibility of solutions as two different metrics of their overall fitness and use parent 
selection methods that select individuals according to either their objective quality or 
their feasibility. 

In the work of F.Jimenez and J.L.Verdegay [Jimenez et.al.(1999)], the “optimality” 
and the “unfeasibility” of solutions are treated as two different measures and a 
tournament selection method is used that selects parents according to the following 
three rules: (1) two feasible individuals are compared based on their objective fitness 
and the best is selected, (2) a feasible solution is always preferred over an unfeasible 
one, and (3) when two unfeasible solutions are compared, the maximum constraint 
violation is calculated for both solutions and the one with the lower constraint 
violation wins. 

2.7 Category (g): Methods that use two-phase strategies for satisfying the 
constraints and optimising the objective function 
Methods of this category [Hinterding et.al.(1998)], [Schoenauer et.al.(1993)] first 
concentrate on finding feasible solutions, and then they try to optimise the objective 
function preserving the solution feasibility. This category includes the Behavioral 
Memory Model method proposed by M. Schoenauer and S. Xanthakis [Schoenauer 
et.al.(1993)] that, before optimising the objective function, it evolves a population of 
solutions trying to find the feasible area of the search space. Another method of this 
category is the CONGA method of R. Hinterding and Z. Michalewicz [Hinterding 
et.al.(1998)] that uses sophisticated parent matching techniques to select parent 
genotypes in order to promote the generation of offspring that first satisfy the 
constraints and later optimise the objective function in a two-phase strategy. 

2.8 Category (h): Multi objective optimisation methods 
The optimization of an objective function F( xr ) that is subject to n=p+q constraints 
can be seen as a multiobjective optimization problem (MOOP) where the objective 
function F( ) and the n measures of constraint violation di(xr xr ), i=1..n, constitute a 
n+1 dimensioned vector U

v
= (F( xr ), d1( xr ) , d2( xr ) , ... , dn( xr ) ), each member of 

which must be optimised (minimized for di( xr ), i=1..n). This formulation allows the 
application of any multiobjective optimization method [Fonseca et.al.(1995)] to the 
area of constrained optimization problems. Some classical multiobjective 
optimisation methods create an aggregating optimisation function Qagg( ) that 
usually is a combination (linear or not) of the elements of vector U

xr
v

 (e.g. 
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∑ =
⋅+⋅=

n

i iioagg xdwxFwxQ
1

)()()( rrr , where wi, i=0..n are weight coefficients). This 

approach resembles the various penalty approaches mentioned in category (c). Other 
multiobjective optimization techniques focus on creating sophisticated parent 
selection strategies to promote the simultaneous optimization of each of the objectives 
within the evolving population. Some of these selection strategies aim in producing 
certain fractions of the offspring population by selecting parents according to each 
one of the objectives, separately. Other methods use Pareto-based [Fonseca 
et.al.(1995)] fitness assignment mechanisms that are based on Pareto-optimality. Such 
methods assign ranks to individuals in a population according to whether they are 
dominated by other individuals (i.e. if other individuals exist that have better 
objective values concerning all of the objectives) or not.  

In the work of D. Schaffer [Schaffer (1985)] a Vector Evaluated GA (VEGA) is 
proposed that selects 1/(n+1) of the parents based on each of the objectives. 

In the work of P.D. Surry et.al. [Surry et.al.(1995)] all members of the population are 
ranked on the basis of constraint violation with a penalty value r( xr ). The penalty 
r( ), together with the value of the objective function F(xr xr ), leads to the two-
objective optimisation problem. 

2.9 Category (i): Co-evolutionary methods that maintain more than one 
populations. 
In this category we should report the Genocop III method introduced by Z. 
Michalewicz and G. Nazhiyath [Michalewicz et.al.(1995)]. This method maintains 
and evolves two populations: one with search points that are produced genetically and 
may be feasible or unfeasible, and another with reference feasible points selected 
from the previous population. The method repairs the unfeasible solutions of the first 
population using reference points from the second population. 

2.10 Category (j): Complex hybrid methods 
Methods of this class combine one or more of the above methods together with 
calculus-based or other methods. A representative example is that of the method 
called Genocop II, introduced by Z. Michalewicz and N. Attia [Michalewicz 
et.al.(1994)]. This method combines traditional calculus-based optimisation methods 
together with GAs and a meta-level Simulated Annealing scheme, for the solution of 
optimisation problems with linear and nonlinear constraints. 

2.11 Category (k): Methods based on novel approaches 
One of the methods of this category is Cultural Algorithms [Reynolds (1994)]. 
Cultural Algorithms are based on the notion of culture, being another form of 
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inheritance system. They maintain a “belief space” that is used to constrain the 
combination of characteristics that the population members can have. The belief 
space is associated with the “acceptable” individuals’ characteristics (or behavior) 
and is used as a constraint to guide the search for characteristics with good qualities. 

Also belonging in this category is the method of P. Hajela and J. Lee [Hajela 
et.al.(1996)] who use an Artificial Immune System model. In their implementation 
the authors separate the feasible genotypes of the population (antigens) from the 
unfeasible ones (antibodies). Then, they separately evolve the sub-population of 
unfeasible genotypes in order to maximize the similarity between them and the 
feasible ones. Then the two populations are mixed, and, since all genotypes are now 
feasible, they are evolved using a standard genetic algorithm. 

Another novel approach is the method proposed by G. Bilchev and I. Parmee [Bilchev 
et.al.(1996)] who use an Ant Colony search model. This model is applicable to 
continuous search spaces by representing a finite number of search directions from a 
base point (the nest) as vectors that evolve in time according to the ants’ fitness. The 
model works on three levels: the individual search (e.g. stochastic hill climbing), the 
cooperation between agents (ants) and the meta-cooperation level between search 
paths. In order to handle constraints, the authors add the feature of “acceptability” to 
the “food sources” (highly fit solutions) that guide the evolution of the ants. The 
acceptability of a “food source” decreases as the amount of constraint violation 
increases.  

3. Constraint Handling Methods Used for the Comparison Test 
For presenting comparative results of various constraint handling techniques we 
consulted the work of Z. Michalewicz and G. Nazhiyath [Michalewicz et.al.(1995)] 
and the work of R. Hinterding and Z. Michalewicz [Hinterding et.al.(1998)]. The nine 
methods compared in these works are: 

1. The static penalty method of A. Homaifar, S. Lai and X. Qi, (cat. c-1) 

2.  The method of varying penalties of J.A.Joines and C.R.Houck (cat. c-2). 

3.  The method of M. Schoenauer and S. Xanthakis (cat. g). 

4.  The Genocop II method by Z. Michalewicz and N. Attia (cat. j). 

5.  The method of static penalties of D. Powell and M. Skolnick (cat. c-1). 

6a. The method of rejecting the unfeasible solutions (death penalty) (cat. a) 

6b. The same method but starting with a feasible population (cat. a). 

7.  The method Genocop III of Z. Michalewicz and G. Nazhiyath (cat. i). 

8.  The CONGA method of R. Hinterding and Z. Michalewicz (cat. g). 
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The population was 70 genotypes in all cases and the generation limit was 5000 
generations. 

To test the performance of the VFF technique we have built implementations for two 
more methods: 

9.  A GA using a static penalty function of the form : 

, where A is a 

“severity” factor, δi is a binary factor (δi=1 if constraint i is violated and δi =0 
otherwise), wi is a “weight” factor for constraint i, di(

( ) ( ) ( ) ( ) ( )( ) x

qp

i
iii BxdwAxFxPxFxQ r
rrrrr δδ ⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Φ⋅⋅⋅+=+= ∑

+

=1

xr ) is a measure of the degree of 
violation of constraint i, Φi(.) is a function of this measure, B is a penalty threshold 
and δ  is a binary factor (δxr xr =1 if xr  is unfeasible and δ xr =0 otherwise).Two 
different implementations are built for this method. The first one (9a) is a simple 
Genetic Algorithm (sGA). The second (9b) is a GA with a Hill Climbing operator 
(GA-HC). This implementation incorporates all of the features of sGA plus an 
additional hill climbing operator called Phenotype Mutation [Petridis et.al.(1994)], 
[Petridis et.al.(1998)]. 

10.  A GA with the VFF technique. Two implementations are also built for this 
method. The first one (10a) is a simple GA with the VFF technique (GA-VFF). The 
second (10b) is a GA with Hill Climbing and the VFF technique (GA-HC-VFF). This 
implementation incorporates all of the features of the GA-HC plus the application of 
the Varying Fitness Function technique. 

4. The five Problems of the Comparison Test 
The five test cases were the following: 

Test Case 1. Minimize G1(X) = 5x1 + 5x2 + 5x3 + 5x4 -5 -  (4) ∑
=

4

1i

2
ix ∑

=

13

5i
ix

with variable ranges: 0≤xi≤1, i=1…9,    0≤xi≤100, i=10,11,12,    0≤xi≤1, i=13 

and 9 constraints: 

2x1+2x2+x10+x11 ≤ 10  

2x1+2x3+x10+x12 ≤ 10 

2x2+2x3+x11+x12 ≤ 10 

-8x1+x10 ≤ 0 

-8x2+x11 ≤ 0 
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-8x3+x12 ≤ 0 

-2x4-x5+x10 ≤ 0 

-2x6-x7+x11 ≤ 0 

-2x8-x9+x12 ≤ 0 

Test Case 2. Minimize G2(X) = x1 + x2 + x3      (5) 

with variable ranges: 100≤x1≤104, 1000≤xi≤104, i=2,3, 10≤xi≤1000, i=4..8 , 

and 6 constraints: 

1-0.0025(x4+x6) ≥ 0  

1-0.0025(x5+x7-x4) ≥ 0  

1-0.01(x8-x5) ≥ 0  

x1x6-833.33252x4-100x1+83333.333 ≥ 0  

x2x7-1250x5-x2x4+1250x4 ≥ 0  

x3x8-1250000-x3x5+2500x5 ≥ 0  

Test Case 3. Minimize the function: 

G3(X)=(x1-10)2+5(x2-12)2+x34+3(x4-11)2+10x56+7x62+x74-4x6x7-10x6-8x7   (6) 

with variable ranges: -10 ≤ xi ≤ 10,  i=1..7 , 

and 4 constraints: 

127 - 2x12 - 3x24 - x3 - 4x42 - 5x5 ≥ 0  

282 - 7x1 - 3x2 - 10x32 - x4 + x5 ≥ 0  

196 - 23x1 - x22 - 6x62 + 8x7 ≥ 0  

-4x12 - x22 + 3x1x2 - 2x32 - 5x6 + 11x7 ≥ 0  

Test Case 4. Minimize G4(X) =        (7) 54321 xxxxxe
with variable ranges: -2.3 ≤ xi ≤ 2.3,  i=1,2 ,    -3.2 ≤ xi ≤ 3.2,  i=3,4,5  

and 3 constraints: 

x12 + x22 + x32 + x42 + x52 = 10  

x2x3 - 5x4x5 = 0  

x13 + x23 = -1  

Test Case 5. Minimize the function: 
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G5(X) = x12 + x22 + x1x2 - 14x1 - 16x2 + (x3 - 10)2 + 4(x4 - 5)2 + (x5 - 3)2 + 2(x6 - 
1)2 + 5x72 + 7(x8 - 11)2 + 2(x9 - 10)2 + (x10 - 7)2 + 45    (8) 

with variable ranges: -10 ≤ xi ≤ 10,  i=1..10 , 

and 8 constraints: 

105 - 4x1 - 5x2 + 3x7 - 9x8 ≥ 0  

-10x1 + 8x2 + 17x7 - 2x8 ≥ 0  

8x1 - 2x2 - 5x9 + 2x10 + 12 ≥ 0  

-3(x1 - 2)2 - 4(x2 - 3)2 - 2x32 + 7x4 + 120 ≥ 0  

-5x12 - 8x2 - (x3 - 6)2 + 2x4 + 40 ≥ 0  

-x12 - 2(x2 - 2)2 + 2x1x2 - 14x5 + 6x6 ≥ 0  

-0.5(x1 - 8)2 - 2(x2 - 4)2 - 3x52 + x6 + 30 ≥ 0  

3x1 - 6x2 - 12(x9 - 8)2 + 7x10  ≥ 0  

5. Simulation Results and Comparisons 
The test results of methods 1 through 6b of Section 3 on the five problems of Section 
4 are shown in Table 1. Also the test results of methods 7 through 10b of Section 3 
are reported in Table 2. 

For methods 1 through 7, 10 experiments were performed for each problem. For 
method 8, 20 experiments were performed, and for methods 9a – 10b 50 experiments 
were performed for each problem. 

In both tables for every problem the best (b), median (m) and worst (w) solution 
found is shown, together with the number (c) of violated constraints at the median 
solution. The three numbers displayed in the (c) rows of Table II are the number of 
constraints violated by a quantity between 1.0 and 10, 0.1 and 1.0, and 0.001 and 0.1 
respectively. For methods 9a through 10b the percentage of feasible solutions is 
shown instead. The symbol ‘*’ means that the method was not applied on the specific 
test case and the symbol ‘⎯’ means that the solution produced was not meaningful 
(the constraints were violated by a quantity more than 10). 

Among methods 1 through 8 the ones that exhibit the best overall performance are the 
CONGA method (R. Hinterding and Z. Michalewicz, method 8), Genocop II method 
(Z. Michalewicz and N. Attia, method 4), the Genocop III method (Z. Michalewicz 
and G. Nazhiyath, method 7) and the GA-HC-VFF method (S.Kazarlis and V. 
Petridis, method 10b). 

 



Even page header 104 

Table 1. Results of  7 methods on 5 problems. Method numbering corresponds to that 
of Section 3 
 
test 
case 

Exact 
optima 

 Method 
1 

Method 
2 

Method
3 

Method
4 

Method
5 

Method 
6a 

Method 
6b 

  b -15.002 -15.000 -15.000 -15.000 -15.000  -15.000 
1 -15.00 m -15.002 -15.000 -15.000 -15.000 -15.000 ⎯ -14.999 
  w -15.001 -14.999 -14.998 -15.000 -14.999  -13.616 
  c 0, 0, 4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0  0, 0, 0 
  b 2282.72 3117.24 7485.66 7377.97 2101.36  7872.95 

2 7049.33 m 2449.79 4213.49 8271.29 8206.15 2101.41 ⎯ 8559.42 
  w 2756.68 6056.21 8752.41 9652.90 2101.55  8668.65 
  c 0, 3, 0 0, 3, 0 0, 0, 0 0, 0, 0 1, 2, 0  0, 0, 0 
  b 680.771 680.787 680.836 680.642 680.805 680.934 680.847 

3 680.63 m 681.262 681.111 681.175 680.718 682.682 681.771 681.826 
  w 689.660 682.798 685.640 680.955 685.738 689.442 689.417 
  c 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 
  b 0.084 0.059  0.054 0.067   

4 0.05395 m 0.955 0.812 * 0.064 0.091 * * 
  w 1.000 2.542  0.557 0.512   
  c 0, 0, 0 0, 0, 0  0, 0, 0 0, 0, 0   
  b 24.690 25.486  18.917 17.338  25.653 

5 24.3062 m 29.258 26.905 ⎯ 24.418 22.932 ⎯ 27.116 
  w 36.060 42.358  44.302 48.866  32.477 
  c 0, 1, 1 0, 0, 0  0, 1, 0 1, 0, 0  0, 0, 0 

 

For test case 1 all methods find the same optimal solution. For test case 2 the best 
solution is found by method 8 (CONGA) while the second best is found by GA-HC-
VFF. For test case 3, method 7 (Genocop III) finds the overall best solution, followed 
by method 8 (CONGA). For test case 4, the best solution is found by GA-HC-VFF, 
followed by method 8 (CONGA) and method 4 (Genocop II). And finally for test case 
5, the best solution is also found by the GA-HC-VFF method while method 8 
(CONGA) comes second best. 

From these results it is evident that some methods seem to clearly outperform others, 
exhibiting better performance on diverse problems. It is also evident that among the 
best methods one cannot clearly distinguish a winner, as some of them exhibit better 
performance on some problems and worse on others. 
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TableII. Results of 6 more methods on the 5 problems. Method numbering 
corresponds to that of Section 3 

test 
case 

Exact 
optima 

 Method
7 

Method
8 

Method 9a 
sGA 

Method 9b 
GA-HC 

Method 10a 
GA-VFF 

Method 10b 
GA-HC-VFF 

  b -15.000 -15.000 -15.00 -15.00 -15.0 -15.00 
1 -15.00 m -15.000 -15.00 -15.00 -15.00 -15.0 -15.00 
  w -15.000  -15.00 -15.00 -15.0 -15.00 
  c 0, 0, 0  100% 100% 100% 100% 
  b 7286.65 7083.21 7529.0478 7270.5369 7248.3587 7115.9982 

2 7049.33 m  7804.33 10080.1641 8936.8215 9040.7122 9002.5598 
  w   17085.2636 12983.4040 12561.9301 11944.3052 
  c   78% 90% 72% 90% 
  b 680.640 680.65 680.805677 680.72180 680.73259 680.676424 

3 680.63 m  680.72 683.813684 682.74501 682.47911 681.4013675 
  w 680.889  689.413076 688.59298 688.36369 682.4630019 
  c   100% 100% 100% 100% 
  b  0.054 0.0616218 0.0541294 0.0540426 0.0539762 

4 0.05395 m * 0.054 0.617415 0.2450273 0.0805291 0.0756711 
  w  0.054 1.000000 0.7632619 0.2201789 0.2263098 
  c   90% 92% 98% 98% 
  b 25.883 24.44 26.699057 24.966805 24.618510 24.403088 

5 24.3062 m  25.61 41.180946 35.489303 27.335638 27.460453 
  w   74.121369 65.504347 30.802398 30.020087 
  c   100% 100% 100% 100% 

6.Conclusions 

In this paper, a large number of methods, reported in the literature, have been 
presented for handling constraints, when applying GAs on constrained optimization 
problems. Also test results have been presented for a total of 13 different methods on 
a test suite of 5 problems. From the test results it is shown that some methods like 
CONGA and GA-HC-VFF stand out from the crowd, exhibiting robust performance 
on all problems. This work could be enhanced by implementing more methods and 
testing them on a wider range of constrained problems. 
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